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INTRODUCTION 

Colibacillosis produced by enteropathogenic strains of Escherichia 

coli is the principal cause of neonatal diarrhea in piglets and calves. 

Swine colibacillosis is characterized by high morbidity, induction of a 

secretory state in the anterior small intestine and marked fluid and 

electrolyte loss which is frequently fatal in the neonate. The resulting 

serious economic losses have stimulated investigations of the patho­

genesis, prevention and treatment of this syndrome. 

The cellular events involved in the development of the diarrheal 

state are poorly understood, especially those caused by Escherichia coli 

heat-stable enterotoxin (ST). Large unidirectional fluxes of water and 

ions occur across the epithelium of the small intestine and it has been 

proposed that the mature villus cells are primarily absorptive and the 

crypt cells are primarily secretory in nature. The locus of ST action on 

these cell types has not been determined but it has been postulated that 

the toxin inhibits absorption of neutral coupled sodium-chloride influx 

at the brush border of gut epithelial cells. 

Antidiarrheal drugs are frequently employed in an attempt to reduce 

fluid and electrolyte loss in diarrheic states. Drug effects are fre­

quently attributed to inhibition of intestinal motility but there is in­

creasing evidence that drug action on ion transport mechanisms may be more 

important. Investigation of these actions may increase our understanding 

of normal epithelial transport and the derangements of transport in 

diarrhea. 
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The objective of the present study was to determine the effects of 

ST and selected drugs on unidirectional chloride transport in isolated pig 

jejunum and on chloride efflux (secretory) rates in isolated mature and 

immature enterocytes. 
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LITERATURE REVIEW 

Organization and General Architecture of Small Intestinal Mucosa 

The mucosa of the small intestine can be divided into three layers, 

the absorptive layer, the lamina propria and the muscularis mucosa. The 

muscularis mucosa consists of a thin sheet of smooth muscle generally 3-

10 cells thick and separates the mucosa from submucosa (Trier, 1968). The 

middle layer, the lamina propria, is heterogeneous in composition and con­

tains various cell types (Levitan and Wilson, 1974) including fibroblasts, 

macrophages, plasma cells, lymphocytes, eosinophils, and mast cells, as 

well as noncellular connective tissue elements including collagen and 

reticular fibers. Blood and lymph vessels, unmyelinated nerve fibers and 

strands of smooth muscle are also regularly present (Trier, 1968). 

The lamina propria provides important structural support for the 

intestinal epithelium and its vascular and nervous elements. In addition, 

the lamina has been shown to contain significant amounts of immunoglobulin 

(Rubin et al., 1965). IgA seems to be the predominant immunoglobulin in 

external secretions of mammals and is locally derived from cells of the 

lymphoid series situated near glandular epithelium (Tomasi and Bienen-

stock, 1968). Studies on porcine intestinal tissue have shown a similar 

secretory immune system to be operative in the pig and IgA has been demon­

strated in both the crypt epithelium and lymphoid cells of the lamina 

propria (Allen and Porter, 1970). Thus, this antibody is probably synthe­

sized locally in the lamina propria by plasma cells and secreted by crypt 

cells (Allen et al., 1973; Moon, 1976). The lamina propria together with 
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the epithelium forms the numerous fingerlike villi which project from the 

surface of the mucosa into the intestinal lumen as well as the many pit­

like indentations, the crypts, which are found between adjacent villi 

(Trier, 1968). In humans, the villi measure 0.5-1.0 nm in height and in­

crease the absorptive surface eightfold (Friedman and Cardell, 1972). 

The third layer of the intestinal mucosa consists of a continuous 

sheet of a single layer of columnar epithelium attached directly to the 

underlying lamina propria (Levitan and Wilson, 1974). The surface of the 

villi consists of absorptive, goblet and enterochromaffin cells. The 

crypts contain undifferentiated, goblet, enterochromaffin and, in most 

mammalian species, Paneth cells (Trier, 1968). 

Intestinal epithelium is in a constant state of migration and re­

placement (Moon, 1976). The loss of the epithelial cells occurs regularly 

at the tip of the villus. Constant proliferation of new cells from the 

crypts is necessary to maintain normal function of epithelium. The 

crypts seem to be the proliferative pool which contain highly undifferen­

tiated cells which then differentiate during migration from crypts onto 

villi. Thus, there is a gradient within the epithelium such that the 

oldest, most differentiated epithelial cells are at the tip of the villus, 

the younger and less differentiated cells are on the proximal portions of 

the villus and the undifferentiated cells are only in the crypts (Trier, 

1968; Moon, 1976). Although the pattern of cell renewal is the same in 

different species, the time required for cells to migrate from the crypt 

to the villus varies among mammals. In man, it takes about 5-7 days be­

fore cells can reach the tip of the villus in the duodenum and jejunum 
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(MacDonald et al., 1964; Shorter et al., 1964), and about 3 days in the 

ileum (Lipkin et al., 1963). The migration rate of jejunum epithelium of 

rats and mice is only 1-3 days as shown by Leblond and Messier (1958) and 

Quastler and Sherman (1959). 

Fine Structure of Intestinal Epithelial Cells 

Many different structural and functional cell types occur in in­

testinal epithelium. The major cell types seem to be the absorptive 

epithelial cells and their precursors, the undifferentiated crypt epi­

thelial cells. These cells are present throughout the intestinal tract 

and the major digestive and absorptive functions of the epithelium depend 

upon the integrity of these two highly integrated cell types (Moon, 

1976). 

Undifferentiated crypt cells 

Undifferentiated cells are the predominant cell type in the crypts 

and are generally confined to these areas (Levitan and Wilson, 1974). 

They are the progenitors for other epithelial cells. In addition to their 

location and proliferative activity, undifferentiated crypt cells can be 

recognized by their sparse, short, irregular microvilli, straight lateral 

membranes with multiple desmosomes at their apex, numerous free ribosomes 

and polyribosomes, and numerous membrane-bound secretory granules (Moon, 

1976). 

Hendrix and Bayless (1970) pointed out some differences of the un­

differentiated cells from the villus cells as follows: 1. Greater 

affinity for basophilic dyes because of an abundance of ribosomes with 
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high content of ribonucleic acid; 2. Frequent mitotic figures; 3. Less 

well-developed microvilli and absent terminal web; 4. Secretory granules 

in the apical third of the cells. As these cells migrate from the crypt 

onto the villus, they differàitiate into absorptive cells, losing all 

morphologic evidence of secretory activity and the ability to divide 

(Levitan and Wilson, 1974). By the time these cells arrive at the base of 

the villus, they show histochemical evidence of enzyme activity (Johnson 

and Kugler, 1953). It has been demonstrated by Fortin-Magana et al. 

(1970) and Nordstrom et al. (1S67) that the epithelial cells of the villus 

have many specialized enzymatic functions such as alkaline phosphatase and 

disaccharidases which are concerned with the processes of digestion and 

absorption. In contrast, the progenitor cells of the crypt have none of 

these specialized activities, but as would be expected of proliferating 

tissue, they contain high activities of enzymes, such as thymidine kinase, 

involved in the synthesis of DNA (Imondi et al., 1969; Herbst et al., 

1970). 

Absorptive epithelial cells 

Mammalian absorptive cells are tall, columnar cells with basally 

located nuclei. The individual morphologic features of the intestinal 

absorptive cell, such as the microvilli, mitochondria, endoplasmic reticu­

lum, and lysosomes, seem to be shared by other epithelial cells but its 

general appearance is distinct and permits its identification (Trier, 

1968). A schematic diagram of an intestinal absorptive cell is shown in 

Figure 1. These cells are characterized by numerous long, regular micro­

villi along their luminal borders (Moon, 1976). The microvilli increase 
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Figure 1. Schematic diagram of an intestinal absorptive cell (redrawn 
from Trier, 1958) 
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the absorptive surface of the intestine about 30-40 fold (Brown, 1962). 

The microvilli are approximately 0.75-1.5 p in length and 0.1 v in width 

(Curran and Creamer, 1963). The organization of the microvillus is com­

plex, perhaps relating to its intimate role in so many aspects of nutrient 

movement (Sabesin, 1980). The outer surface of the microvilli is covered 

by a fuzzy coat or glycocalyx (Figure 2). The glycocalyx is composed of 

fine filamentous material which is synthesized by the individual epi­

thelial cells (Ito and Revel, 1964). It seems to be remarkedly stable 

since it cannot be removed by washing with ethylenediaminetetracetate 

(EDTA) or with a number of known mucolytic or proteolytic agents (Ito, 

1969). Functionally, the glycocalyx may serve as a barrier against the 

absorption of potentially noxious substances, but more important, it is 

the site containing enzymes involved in the terminal digestion of carbo­

hydrates and proteins (Sabesin, 1980), Ito (1969) and Johnson (1969) have 

shown that the glycocalyx consists in part of both digestive and absorp­

tive enzymes. Among these are disaccharidases such as lactase and 

sucrase, peptidases, and alkaline phosphatase (Sabesin, 1980; Weiser, 

1973). 

Microvilli and glycocalyx become more extensive as the cell matures 

in its migration toward the villus tip. Microvilli are more numerous, 

regular and elongated on villus absorptive cells of small intestine than 

on surface absorptive cells in the colon (Moon, 1975). The area immedi­

ately beneath the microvilli is called the terminal web and is relatively 

free of organelles except for filaments that extend into the cores of the 

microvilli. The major function of the terminal web might be to stiffen and 
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Figure 2. Schematic illustration of the specializations of the apical 
cytoplasm of the plasma membrane of intestinal absorptive 
cells (redrawn from Trier, 1968) 
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stabilize the cell surface (Pal ay and Karl in, 1959). The structural sta­

bility of the microvillus-terminal-web complex is demonstrated by its 

ability to resist osmotic and mechanical shock of sufficient magnitude 

that can result in disintegration of the remainder of the absorptive cell 

(Miller and Crane, 1961). 

The apical portion of the intestinal epithelial cells contains the 

usual complement of subcellular organelles found in most mammalian cells 

such as smooth and rough endoplasmic reticulum, mitochondria, occasional 

lysosomes, and vesicles. The intestinal epithelium is not particularly 

active in protein synthesis and this may be implied indirectly by the ob­

servation that the rough endoplasmic reticulum is not as extensively de­

veloped as it is, for example, in pancreatic acinar cells in which pan­

creatic enzyme synthesis occurs (Sabesin, 1980). 

Absorptive cells interdigitate extensively along their lateral 

borders especially in fasting cells where the intercellular space is in­

significant. During active nutrient transport, the entrance of absorbed 

nutrients into the intracellular space is associated with a marked disten­

sion of this space such as during active lipid absorption (Sabesin, 

1980). There are various junctional complexes which provide a mechanism 

for the adherence of cells to each other and also provide structural de­

vices which prevent the leakage of nutrients and ions but allow cell to 

cell communication. Specialized attachment zones have been noted between 

adjacent intestinal epithelial cells for many years. Apparent thickenings 

with increased stain affinity at the extreme apical portion of adjacent 

lateral plasma membranes were named "terminal bars" by light micro-
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scopists since 1898 (cf. Trier, 1968). Farquhar and Palade (1963), using 

the electron microscope, noted that the "terminal bar" of the light 

microscopists is indeed a "tight junction" resulting from the fusion of 

the outer leaflets of adjacent plasma membranes. This fusion obliterates 

the intracellular space and forms an encircling belt that provides an 

impermeable barrier to the exit of nutrients contained within the inter­

cellular space (Hull and Staehelin, 1976). The lateral intercellular 

space, between the apical junctional complexes and the basement membrane 

of absorptive cells, does not occur in normal crypt epithelium. This 

space becomes progressively more prominent as cells move toward the villus 

tip (Moon, 1976). Most absorbed materials, such as water or lipid, move 

into the lateral intercellular space to blood and lymph (Loeschke et al., 

1970; Tomasini and Dobbins, 1970). 

Also binding adjacent epithelial cells are two types of desmosomes 

(Sabesin, 1980). The belt desmosome located near the tight junction is 

made up of protein fibrils which occupy the intercellular space between 

adjacent lateral membranes adding to the syncytial chracteristies of the 

epithelium. The spot desmosome is composed of areas of electron-dense 

fibrils in the intercellular spaces extending into the surrounding cyto-

sol. 

Another junctional complex called a "gap" junction connects the ex­

terior membranes of adjacent cells but permits the passage of molecules 

from cell to cell through connecting channels of some 15 A in greatest 

width (Hull and Staehelin, 1976). This site is sufficient to permit 

passage of molecules of the size of sucrose from cell to cell. Freeze 
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fracture studies have shown that the gap junction is formed by a mosaic of 

cylindrical particles (Sabesin, 1980). 

The basal surface of intestinal epithelial cells is in close proximi­

ty to its basement membrane (Trier, 1968) which is a continuous sheet of 
o 

homogeneous material of intermediate density measuring approximately 300 A 

wide (Sabesin, 1980). The basement membrane separates the basal pole of 

the epithelial cells from the underlying lamina propria. Rubin (1966) 

has shown that interruptions occur in the basement membrane during migra­

tion of materials such as chylomicrons and mononuclear cells from the 

intercellular space to the lamina propria. Nutrient absorption is en­

hanced by the rich vascular and lymphatic supply of the lamina propria 

which provides a ready means of access of absorbed nutrients into the 

vascular lymphatic system (Sabesin, 1980). 

Under some conditions, absorptive cells develop an invagination of 

their apical membranes that connect with tubules in the terminal web and 

eventually with vesicles and large vacuoles in the cytoplasm (Moon, 

1976). This system is used, during passive immunization of the newborn, 

to take up macromolecules and colostral and milk antibody from the in­

testinal lumen. Worthington and Graney (1973a,b) have shown that epi­

thelial cells can absorb bacteria and viruses by pinocytosis during the 

neonatal period. 

Goblet cells 

Goblet cells are found both in the crypts and along the villi of the 

small intestine and become progressively more numerous from the midjejunum 

to terminal ileum (Hendrix and Bayless, 1970). They possess a few apical 
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microvilli in addition to their characteristic mucous granules and 

prominent rough endoplasmic reticulum. The morphology of the goblet cells 

of the small intestine is very similar regardless of their location in 

crypts or villi and in proximal or distal small bowel (Trier, 1968). Pre­

sumably the only important function of goblet cells is mucus secretion 

(Moon, 1976). 

Paneth cells 

Paneth cells occur at or near the bases of the crypt in small in­

testine. They are prominent in primates and rodents but do not occur in 

cattle, cats, dogs or pigs (Moon, 1976). These cells are highly differen­

tiated and have an elaborate and well-organized rough endoplasmic reticu­

lum which suggests great secretory potential (Hendrix and Bayless, 1970). 

Their functional significance is not well-understood, however, they are 

both phagocytic (Erlandsen and Chase, 1972a,b) and secretory (Staley and 

Trier, 1965). Moon (1976) described the ultrastructure of Paneth cells as 

containing large secretory granules which nearly fill their cytoplasm, 

nuclei, basal and prominent lamellar arrays of rough endoplasmic reticu­

lum, numerous lysosomes, and a few irregular microvilli. Troughton and 

Trier (1969) have shown that Paneth cells persist in crypts longer than 

most intestinal epithelial cells. 

Enterochromaffin cells (argentaffin cells) 

Enterochromaffin cells occur throughout the alimentary tract, especially 

in the crypts (Moon, 1976). They are endocrine cells which cannot be con­

sidered as a single cell type but vary depending on their granule type and 

content, and whether they contain serotonin, catecholamine, gastrin. 
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secretin or enteroglucagon (Forssmann et al., 1969). Moon (1976) de­

scribed enterochromaffin cells as triangular in outline, with most of 

their small heterogeneous secretory granules between the nucleus and broad 

aspect of the cell which is near the basement membrane. It has been sug­

gested that the secretory products are liberated into tissue and enter the 

blood in contrast to other intestinal epithelial cells that secrete their 

products into the intestinal lumen. Patients with enterochromaffin cell 

neoplasms have diarrhea in association with excessive blood levels of 

serotonin and bradykinin (Gates et al., 1964). The diarrhea is attributed 

to alterations in intestinal motor function. Whether any alteration of 

intestinal fluid transfer occurs independently of the motility alteration 

has not been determined (Hendrix and Bayless, 1970). 

Transepithelial Sodium and Chloride Transport 

Three processes of sodium and chloride absorption by mammalian small 

intestine in vitro have been described by Schultz (1980) as follows: 

1. Uncoupled, "electrogenic" sodium absorption—The cell interior is 

at least 40 mV negative with respect to mucosal solutions and intracellu­

lar sodium activity is lower than the surrounding solutions. Sodium can 

passively move from the mucosal solution across the apical membrane into 

the cell because of these differences in both chemical concentration and 

electrical potential, as illustrated in Figure 3. However, sodium exit 

from the cell across the basolateral membrane into the serosal solution or 

plasma is actively transported against a chemical and electrical potential 

difference. The energy required for this transport is derived from ATP 
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Figure 3. Cellular model of "electrogenic" Na transport by small intestine accompanied by passive, 
"electrically coupled" CI absorption (redrawn from Schultz, 1980) 
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hydrolysis and the enzyme responsible is the ubiquitous sodium-potassium 

adenosine triphosphatase (Na-K-ATPase). Schultz (1978) has shown by 

autoradiographic studies and enzymatic analyses of isolated small in­

testinal cell membranes that the ouabain-sensitive ATPase is localized at 

basolateral membrane and no activity is found in the apical membrane. 

The active absorption of sodium makes the serosal solution electri­

cally positive compared to the mucosal solution. Even though the electri­

cal potential difference is low, only 3-5 mV, it is enough to provide a 

driving force for diffusional flow of chloride from mucosa to serosa 

across the intercellular junctions of the epithelial cells. However, this 

might not be the only mechanism responsible for chloride absorption in the 

small intestine. 

2. Sodium absorption coupled to absorption of organic solutes—The 

model proposed by Schultz and Curran (1970) and Schultz (1977) is 

illustrated in Figure 4. Sodium is absorbed by a cellular mechanism re­

sembling the uncoupled process mentioned above. A wide variety of water-

soluble organic solutes are actively absorbed by using the energy in­

directly derived from the sodium pump at the basolateral membrane which 

maintains low intracellular sodium concentrations. Thus, the entrance of 

organic solutes, such as glucose or amino acids is coupled to the downhill 

movement of sodium into the cell in a carrier-mediated facilitated diffu­

sion. Solute exit from the cell may occur by sodium independent facili­

tated diffusion (Schultz, 1980). 

3. Neutral sodium chloride cotransport—Frizzell et al. (1979a) have 

presented a model for a neutral sodium chloride cotransport process 
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Figure 4. Cellular model of Na-coupled absorption of organic solutes (S) by small intestine 
(redrawn from Schultz, 1980) 
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(Figure 5). This mechanism seems to be a major route for sodium and 

chloride absorption by the small intestine. The existence of a mechanism 

capable of mediating electrically neutral (one-for-one) sodium chloride 

absorption was first suggested as a result of studies in fish and rabbit 

gallbladder by Diamond (1962, 1964), Wheeler (1963), and Dietschy (1964). 

Later, its presence was confirmed in epithelial cells of the mammalian 

intestine, including human ileum (Turnberg et al., 1970), rabbit ileum 

(Nellans et al., 1973), rat colon (Binder and Rawlins, 1973) and bovine 

rumen (Chien and Stevens, 1972). 

The central features of this mechanism as explained by Frizzell et 

al. (1976, 1979a) and Schultz (1980) are as follows: 

1. A carrier mechanism located at the mucosal membrane mediates the 

one-for-one, neutral entry of sodium and chloride into the cell. This 

entry process is inhibited by elevated levels of cell cyclic adenosine 

3',5'-monophosphate (cAMP) as shown by Frizzell et al. (1975, 1979a) and 

Nellans et al. (1973). 

2. Sodiuz passively moves into the cell due both to the differences 

in chemical concentration and electrical potential. The movement of 

sodium energizes the uphill flow of chloride against its electrochemical 

potential difference. 

3. Sodium is extruded from the cell by the energy dependent, 

ouabain-sensitive ATPase to maintain low intracellular sodium concentra­

tions and the electrochemical potential difference for sodium across the 

mucosal membrane. 

4. Chloride passively moves out of the cell down its electrochemical 

gradient. 
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Figure 5. Cellular model of neutral NaCl absorption by small intestine (redrawn from Schultz, 1980) 
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The energy necessary for this active transepithelial chloride absorp­

tion may be derived from coupling to the sodium gradient across the apical 

membrane and also indirectly from the energy invested in the sodium pump at 

the basolateral membrane. However, the precise mechanism is still un­

known . 

Mechanism of Intestinal Chloride Secretion 

A cellular model for active chloride secretion has been proposed by 

Frizzell et al. (1980) as shown in Figure 6. Sodium and chloride enter 

the cell from the serosal solution via sodium chloride cotransport at the 

basolateral membrane. Chloride movement into the cell is against its 

electrochemical potential difference. By coupling to sodium, which moves 

down Its electrochemical potential difference, chloride can enter the 

cell. Furosemide interacts with the secretory process by inhibiting 

sodium chloride cotransport across the basolateral membrane. After sodium 

and chloride accumulate in the cell, sodium is extruded by an energy de­

pendent, ouabain-sensitive sodium pump located at basolateral membrane. 

However, the exit of chloride from the cell to the mucosal solution is 

passive and down its electrochemical potential difference. Thus, any 

agent that stimulates secretion of chloride can do so by increasing the 

chloride permeability of the apical membrane. There is a direct evidence 

from the study by Klyce and Wong (1977) that stimulation of active chlo­

ride secretion by rabbit cornea is associated with a marked decrease in 

the resistance of the apical membrane due to a specific increase in its 

chloride permeability. A similar increase in membrane permeability to 
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Figure 6. Model for active Cl secretion by rabbit colon (redrawn from Frizzell et al., 1980) 
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chloride has been observed in insect salivary gland cells (Berridge et 

al., 1975) and pancreatic exocrine cells (Gardner, 1979). 

Cyclic Nucleotides and Small Intestinal Ion Transport 

Determination of unidirectional sodium and chloride fluxes and short 

circuit current across small intestine mounted in Ussing chambers in vitro 

has provided useful information about ion transport across the epithelial 

tissues. The studies by Field (1971), Field et al. (1972), and Bolton and 

Field (1977) show that if an agent that increases the concentration of 

cAMP (e.g., cholera toxin) is added to the tissue, rapid and sustained 

increases in potential difference and short circuit current develop. The 

direction of net chloride transport reverses from absorption to secretion 

due both to a decrease in the unidirectional mucosa-to-serosa flux and an 

increase in the unidirectional serosa-to-mucosa flux. The direction of 

net sodium transport is also reversed, though to a lesser degree than 

chloride transport. Field (1980) postulated that there are two mechanisms 

responsible for these changes: sodium chloride cotransport across the 

brush border and sodium-dependent chloride secretion. These two mecha­

nisms are cAMP sensitive. 

The model for actions of cAMP on ion transport in intestinal villus 

and crypt cells is shown in Figure 7 (Field, 1980). Cyclic AMP inhibits 

sodium chloride cotransport across the brush border, so transepithelial 

chloride absorption and most transepithelial sodium absorption are in­

hibited. This was first demonstrated by Nellans et al. (1973) using 

rabbit ileum. Similar studies on the effect of cAMP have been made by 
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Figure 7. Postulated separate actions of cAMP on ion transport in 
intestinal villus and crypt cells (redrawn from Field, 
1980) 



www.manaraa.com

30 

VîUus CeH 

y 

Crypt CeH Lumen 

' CA.Vll-' 



www.manaraa.com

31 

Frizzell et al. (1979b) on flounder intestine and on rabbit gallbladder 

(Frizzell et al., 1975). They concluded that cAMP may inhibit a specific 

brush border permeability factor that is rate limiting for sodium chloride 

absorption. 

In addition to the antiabsorptive effect of cAMP which plays a sig­

nificant role in the overall shift from absorption to secretion, the 

direct stimulation of an electrogenic secretory process has also been 

suggested (Field, 1980). Chloride is secreted against an electrochemical 

potential difference which depends on the presence of sodium in the 

serosal bathing medium and is ouabain-sensitive. Chloride accumulates 

intracellularly above electrochemical equilibrium, and in the resting 

secretory cell, there is little or no chloride conductance in the apical 

membrane and chloride simply recycles to the serosal medium. Chloride 

secretion is initiated when apical conductance is increased. An important 

intracellular stimulus for this increased membrane conductance appears to 

be cAMP in the frog cornea (Klyce and Wong, 1977) and cAMP may act in a 

similar manner on intestinal epithelium. 

Circumstantial evidence suggests that cAMP exerts its antiabsorptive 

action in villus cells and its direct secretory action on crypt cells 

(Field, 1980). For example, in rabbit gall bladder (Frizzell et al., 

1975) and in flounder intestine (Frizzell et al., 1979b) which contain 

no crypts or other multicellular gland-1 ike structures, cAMP inhibits salt 

absorption in both tissues but does not stimulate net secretion in either. 

On the contrary, in rabbit distal colon, where crypts are prominent, cAMP 
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can stimulate active chloride secretion but has no effect on coupled 

sodium chloride absorption (Frizzell et al., 1976). 

Cyclic guanosine monophosphate (cGMP), another important cyclic 

nucleotide, has also been shown to play a role in stimulating secretion 

in the small intestine. Many studies show that the effect of heat stable 

Escherichia coli enterotoxin (ST) in producing diarrhea is associated with 

increased level of mucosal cGMP (Field et al., 1978; Hughes et al., 1978; 

Scoot et al., 1980), and activation of guanylate cyclase (Field et al., 

1978; Guerrant et al., 1980). Cyclic AMP levels are unchanged. However, 

the precise mechanism for the secretory effects of cGMP is unknown. Para­

doxically, some drugs, such as adrenergic agonists, which increase absorp­

tion of water and electrolytes in the small intestine also produce a 

short-lived increase in mucosal cGMP (Field and McColl, 1973; Brasitus 

et al., 1976). It has been suggested that there may be more than one pool 

of cyclic nucleotide that can be stimulated in the intestinal mucosa 

(Powell and Tapper, 1979). 

Calcium has been shown to stimulate a variety of secretory processes. 

Addition of Ca ionophore A-23187 to the serosal side of isolated rabbit 

ileal mucosa produced a secretory response qualitatively identical with 

those produced by cAMP and theophylline (Bolton and Field, 1977). Many 

epithelia have been shown to secrete their products in the presence of Ca 

ionphore: histamine by mast cells (Foreman et al., 1973), fluid by blow­

fly salivary gland (Prince et al., 1972), catecholamine by cat adrenal 

(Garcia et al., 1975). Babcock et al. (1976) suggested that the ionophore 

can increase cytosolic Ca by facilitating Ca entry across the plasma mem­
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brane and/or by releasing Ca from mitochondria. Frizzell (1977) found 

that Ca ionophore when added to mucosal solution of rabbit colon reversed 

active chloride absorption to active chloride secretion without affecting 

the rate of active Na absorption. The effect of Ca ionophore was Ca de­

pendent, unlike the cAMP effect which did not need extracellular calcium. 

The mechanism of calcium-induced active chloride secretion is unknown. 

However, Frizzell (1977) suggested that the ionophore-induced secretion 

was not mediated by an increase in mucosal cAMP since A-23187 did not in­

fluence the cAMP levels of colonic mucosa. He concluded that Ca might act 

as a direct activator of the transport process responsible for chloride 

secretion. The ability'of cAMP to increase Ca efflux from fly salivary 

gland (Prince et al., 1972), isolated kidney cells (Borle, 1974), isolated 

pancreatic acinar cells (Christophe et al., 1976), and colonic mucosa 

(Frizzell, 1975) suggested that cAMP might cause electrolyte secretion by 

releasing Ca from intracellular stores (Frizzell, 1977; Field, 1980). 

Frizzell (1977) noted that the effect of A-23187 could be mediated by 

an increase in cGMP levels since A-23187 has been shown to increase cGMP 

in rat parotid slices (Butcher, 1975), guinea pig pancreatic acinar cells 

(Christophe et al., 1976) and human neutrophils (Smith and Ignarro, 1975). 

Guanylate cyclase is a cytoplasmic enzyme which is Ca dependent (Frizzell, 

1977). Many investigators have shown that cholinergic agonists could in­

crease the short circuit current and stimulate chloride secretion (Hard-

castle and Eggenton, 1973; Isaacs et al., 1976) and increase cGMP concen­

tration (Brasitus et al., 1976). However, the role of cGMP in electrolyte 

secretion may not be a direct one since adrenergic agonists which also 
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increased cGMP caused electrolyte absorption (Brasitus et al., 1976; 

Tapper et al., 1978). 

Secretory Diarrhea of Bacterial Origin 

Several enteric bacteria release exotoxins, termed enterotoxins, 

which are capable of stimulating active secretion by the small intestine 

(Argenzio and Whipp, 1980). Among these are Vibrio cholerae, which is an 

important cause of epidemic diarrheal disease in man (Carpenter, 1980), 

and Escherichia coli, the most important cause of morbidity and mortality 

of diarrheal disease in young animals (Wohlgemuth, 1977). 

Vibrio cholerae 

Vibrio cholerae causes an acute diarrhea in man with no apparent 

pathologic change in the intestine (Elliott et al., 1970; Sharp, 1973). 

Since the enterotoxin of V. cholerae, choleragen, is the most thoroughly 

studied and produces the classic example of a pure "secretory diarrhea," 

it is useful as a model with which to compare other bacterial enterotoxins 

(Argenzio and Whipp, 1980). V. cholerae is a gram-negative, motile, 

curved rod that grows on simple nutrient media at alkaline pH (Schrank 

et ai., 1973). If large numbers of vibrios are ingested, the most impor­

tant factor preventing disease is the gastric acid barrier since vibrios 

are highly sensitive to acid (Carpenter et al., 1974). However, organisms 

which survive passage through the stomach multiply in the small intestine 

and produce enterotoxin. Cholera toxin (CT) is a protein enterotoxin with 

a molecular weight of 84,000 and a well-defined subunit structure (Carpen­

ter, 1980). The three subunits are characterized as A^, Ag and B. A^ 
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subunit is responsible for the toxin activity, while Ag may serve to 

stabilize the A subunit complex (Ohtomo et al., 1976) which contains four 

to six B subunits (Lonnroth and Holmgren, 1973). The B subunit complex 

lacks toxin activity but is capable of binding to membrane sites (Richards 

and Douglas, 1978). After the toxin binds to mucosal receptors, mono-

sialogangliosides in the brush border (Fishman and Brady, 1976), a sus­

tained stimulation of cellular adenylate cyclase occurs (Kimberg et al., 

1971) with subsequent increased levels of cAMP. Cholera toxin is charac­

terized by a delayed onset of action and a prolonged duration of action 

(Argenzio and Whipp, 1980). After exposure of small intestinal mucosa to 

CT, decreased net absorption can be detected within 30 to 60 minutes, but 

maximum secretion is not observed until 3 hours and is sustained for 12 

hours even when the mucosa is washed in an attempt to remove the toxin 

(Carpenter et al., 1969). The delayed onset of action is thought to be 

related to dissociation of a toxin subunit from the catalytic site of the 

adenylate cyclase complex at the intracellular surface of the cell mem­

brane (Argenzio and Whipp, 1980). 

The concept that the enterotoxin effect of cholera is mediated by 

cAMP has been confirmed by identical changes in ion movement (a net secre­

tory flux of chloride and reduced net absorptive flux of sodium) upon 

addition of cAMP or theophylline (Field et al., 1968). Field et al. 

(1972) suggested that both cAMP and CT stimulate active secretion by a 

common pathway. This conclusion is based on the flux data and also the 

fact that pretreatment of rabbit ileal mucosa with CT greatly reduced the 

short circuit current response to theophylline and dibutyryl cyclic AMP. 
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From the investigation of enterotoxin effects on rabbit and swine 

jejunum, Hamilton et al. (1978) found that, in contrast to rabbit jejunum, 

the secretory response to enterotoxin in pigs was not accompanied by ele­

vations in mucosal cAMP concentrations. The results are inconsistent with 

the hypothesis that the adenylate cyclase system is an essential step for 

enterotoxin induced intestinal secretion. They concluded that the activa­

tion of intestinal adenylate cyclase by bacterial enterotoxin may only be 

an associated and not a necessary event for the stimulation of intestinal 

secretion. 

In contrast to the specificity of most hormone-adenylate cyclase 

interactions, CT is able to interact with any cell-surface receptor acti­

vating adenylate cyclase (Argenzio and Whipp, 1980). When the tissue is 

exposed to this toxin by artificial means, a response occurs which is 

characteristic of the particular tissue examined. For example, CT en­

hances lipolysis in the rat epididymal lipocyte (Vaughan et al., 1970); 

causes sustained hyperglycemia after intravenous injection in the dog 

(Pierce et al., 1972); increases steroidogenesis from adrenal cells 

(Donta et al., 1973). Fortunately, V. cholerae does not have the ability 

to penetrate the gut mucosa so the intestinal effect appears to be the 

only one of significance in the pathogenesis of naturally occurring dis­

ease (Carpenter et al., 1974; Argenzio and Whipp, 1980). 

Escherichia coli 

Although Escherichia coli is part of the natural flora of the 

mammalian gut, certain strains can cause a cholera-like disease in humaos 

and young farm animals (Dallas and Falkow, 1979). The characteristic 
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feature of enterotoxic colibacillosis is proliferation of E. coli in the 

anterior small intestine where they produce an enterotoxin which causes the 

small intestine to secrete fluid (Moon, 1974). Enterotoxic colibacillosis 

in livestock occurs in the young. Three ages of peak incidence of porcine 

enterotoxic colibacillosis are: neonatal, 3 weeks, and immediately post-

weaning, which were explained by Moon (1974) as periods of relative anti­

body deficiency leading to disease susceptibility. Resistance to the 

effects of enterotoxigenic E. coli increases with age (Kohler, 1968; Moon 

and Whipp, 1970; Smith and Linggood, 1972). However, antibody may not be 

the sole factor in resistance to enterotoxin production because resistance 

to both antigenic and nonantigenic forms of enterotoxin occurs (Moon, 

1974). Kenworthy and Allen (1966) and Kenworthy et al. (1967) found that 

in normal, healthy pigs there was a transient increase in fecal fluid 

content, degenerative changes in intestinal absorptive cells, and mal­

absorption of some nutrients following weaning. It is possible that a 

temporary reduction in net fluid absorption at weaning is able to reduce 

the amount of enterotoxin required to cause net secretion (Moon, 1974). 

In other words, physiological changes of the intestinal mucosa may pre­

dispose the epithelium to the secretory effects of toxin. 

Adhesion of E. coli to the intestinal epithelium has been demon­

strated (Smith and Halls, 1968a), and it is possible that attachment 

allows enteropathogenic strains to overcome gut motility and proliferate 

to large numbers in the small intestine (Jones and Rutter, 1972). 

Bertschinger et al. (1972) have shown that enteropathogens rapidly form 

layers near the apical portions of absorptive cells along the villi from 
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the tip to the base adjacent to the brush border membrane while non-

pathogens tend to be in the central lumen. Colonization of the upper 

intestine in pigs may be enhanced by the presence of K88 plasmid-trans-

mitted fimbrial antigen (Jones and Rutter, 1972). Surface antigen K88 is 

common to many, but not all, pig enteropathogens and may be involved in 

the pathogenicity of strains which produce it (Moon, 1974). Jones and 

Rutter (1972) found that in contrast to conventional pigs, enterotoxigenic 

K88-negative E. coli did intensively colonize, without adhering to, the 

anterior small intestine and caused diarrhea in gnotobiotic pigs. The 

essential contribution of adhesion to the pathogenesis of enterotoxic 

colibacillosis is in facilitating colonization of the small intestine 

(Moon, 1974). O'Hanley and Cantey (1978) showed that strains of E. coli 

that produce diarrhea by enterotoxin synthesis or unknown mechanisms con­

tain pili and flagella while strains that produce diarrhea by mucosal 

invasion lack both types of surface structure. Pili are thought to 

mediate adherence to gut mucosal epithelium by bacteria that cause 

diarrhea (Evans et al., 1978). Flagellum-mediated motility may be in­

volved in chemotaxis towards gut mucosal epithelium (Allweiss et al., 

1977) and penetration of the barrier that overlies mucosal epithelium 

(Guentzel et al., 1977). 

Pathogenic strains of E. coli from various species of domestic ani­

mals injected into ligated intestinal loops of suitable hosts caused fluid 

accumulation (De et al., 1956; Smith and Halls, 1967a). Smith and Halls 

(1967a,b) demonstrated that not only E. coli bacterial cultures but also 

their cell-free filtrates produced fluid accumulation in homologous 
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ligated loops of the small intestine. Endotoxin from these cultures did 

not cause fluid accumulation. Like K88 antigen, enterotoxin production is 

controlled by plasmids which can be transmitted between strains of E. coli 

during conjugation (Smith and Halls, 1968b). Smith and Linggood (1971) 

transmitted both K88 and enterotoxic plasmids into the same recipient E. 

coli, transforming nonenteropathogenic strains to enteropathogenic strains 

which could colonize small intestine and produce enterotoxin, and demon­

strated that these are controlled by separate plasmids. 

Two enterotoxins are known to be produced by E. coli. These two 

enterotoxins, one heat-labile (LT) and the other heat-stable (ST) have 

been purified by several groups of investigators (Clements and Finkel-

stein, 1979; Kunkel and Robertson, 1979; Takeda et al., 1979; Lallier 

et al., 1980). Comparison of results among laboratories is difficult be­

cause different methods of treating and assaying enterotoxin as well as 

different strains and methods of production have been used (Moon, 1974). 

However, data from different laboratories indicate that LT, which is 

closely related functionally, structurally, and immunologically to the 

enterotoxin of V. cholerae, is a single entity since the LTs from all 

strains of enterotoxigenic E. coli (ETEC) characterized thus far are 

similar if not identical (Sack, 1980). LT synthesized in cell-free 

medium has a subunit structure analogous to cholera toxin, i.e.. an active 

subunit A, with a molecular weight of 23-26,000 daltons associated with 

3-4 subunits B, each 11,500 daltons (Raskovâ and Raska, 1980). Further­

more, the B subunit of LT binds specifically to ganglioside as does 

the B subunit of enterotoxin of V. cholerae (Sack, 1980). 
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Like cholera toxin, heat-labile E. coli enterotoxin stimulates the 

activity of adenylate cyclase in the mucosa of the small intestine (Field, 

1971) causing a delayed secretion of isotonic fluid which persists for 

many hours after the binding of the toxin to the mucosal cell (Sack et 

al., 1971). Immunological cross reactivity between cholera enterotoxin 

and LT is well-established (Smith and Sack, 1973). In spite of the simi­

larities, the enterotoxins are not identical. Differences in the amino 

acid composition together with similarities have been described for the A 

units of both toxins (Finkelstein and Clements, 1979). Moss and Richard­

son (1978) found different requirements necessary to achieve the optimal 

adenylate cyclase stimulation in vitro. While choleragen activity was 

enhanced by increasing the potassium phosphate or sodium acetate concen­

tration, both salts inhibited LT activity. 

The activation of adenylate cyclase by E. coli LT leads to an in­

crease of cAMP in the mucosal cells of the small intestine (Evans et al., 

1973). This increase alters the intestinal transport in two ways. It 

inhibits a coupled influx for Na^ and CI" at the luminal border, so the 

absorption of NaCl and water is reduced. This effect is probably on 

the villus cells. The second mechanism causes active secretion of anion 

and Na^ into the lumen; this probably takes place in the crypt cells. It 

might be concluded that LT, like cholera toxin, induces net ion fluxes to 

the luminal side, hypersecretion, and diarrhea (Moon, 1974; Raskova and 

Raska, 1980; Field, 1980). 

The available information on ST suggests more heterogeneity than for 

LT. Purified preparations from different laboratories have given variable 
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results (Alderete and Robertson, 1978; Lallier et al., 1980; Lathe et al., 

1980; Takeda et al., 1979) and ST preparations from human and animal 

strains react differently in assays of mouse, pig and rabbit intestine 

(Gyles, 1979; Kapitany et al., 1979). Alderete and Robertson (1978) have 

purified the supernatant of an E. coli strain of porcine origin. They 

found that the molecular weight was 4420-4425 daltons. Amino acid analy­

sis yielded 47 residues with a calculated molecular weight of 5100 

daltons. No trace of lipids or nucleic acids was present but there was a 

positive reaction for carbohydrates. The purified ST has a characteristic 

UV absorption spectrum at 270 nm. The biological activity remains intact 

after heating to 100°C for 30 min. In contrast, Kapitany et al. (1979) 

found that the crude products of E. coli enterotoxin of bovine origin were 

heat stable while the purified toxin was not. Burgess et al. (1978) con­

cluded that there might be two different ST toxins. One is methanol-

soluble, partly heat-stable, and active in neonatal piglets. The other is 

methanol-insoluble, active in weaned pigs and rabbit intestinal loops but 

inactive in the suckling mouse test. However, further research is needed 

before it can be firmly established whether only one or more E. coli ST 

are produced and if and how much they differ between species (Raskova and 

Raska, 1980). 

There is general agreement that the ST is different from the E. coli 

LT product (Alderete and Robertson, 1978). Unlike LT, ST does not stimu­

late adenylate cyclase with subsequent increase in cAMP in the intestinal 

mucosa (Kantor, 1975; Hamilton et al., 1978). Cyclic guanylate cyclase 

stimulation with resulting accumulation of cyclic 3',5'-guanosine mono-
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phosphate (cGMP) may be responsible for E. coli ST effects. The increase 

in cGMP is rapid and precedes the increase of intestinal secretion. In 

vitro studies of purified ST effects on rabbit ileum revealed abolition of 

net chloride absorption accompanied by large and persistent increases in 

cGMP concentration (Field et al., 1978). A central role of c6MP mediated 

action of ST is strongly supported by observations with other cGMP-related 

stimuli. Field et al. (1978) found a good correlation between the effects 

of the enterotoxin and those of the 8-bromo analogue of cGMP. Unlike 

cholera toxin, heat-stable enterotoxin appears to stimulate a nucleotide 

cyclase only in small and large intestine and does not have the effect on 

other tissues (Rao et al., 1979). Apparently, the binding of ST to the 

intestinal mucosa is reversible (Field et al., 1978; Hughes et al., 1978; 

Newsome et al., 1978). Alderete and Robertson (1978) found that it is 

possible to antagonize the biological activity of ST by antisera. How­

ever, ST is a poor antigen. Although ST-mediated intestinal secretion is 

associated with elevated mucosal cGMP, the precise role of this nucleotide 

in epithelial transport process is not understood. 

Bioassay Methods for ST 

The assay methods for ST are limited to animal models since toxin 

activity is specific for intestinal epithelium. The bioassays for ST may 

be divided into three major methods as follows: 

1. Infant mouse assay—This test is used by most investigators with 

some modifications (Dean et al., 1972). The toxin is injected into the 

stomach of 2-4 day old mice. After 3-4 hours, the animals are killed and 
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the entire intestine is removed, weighed and compared to the remaining 

body weight. The natural log of the reciprocal of toxin dilution is 

plotted against the gut weight to body weight (GW/BW) ratio and linear 

regression determined. One mouse unit is defined as the dilution that 

gives a GW/BW ratio of 0.09 and normalized to mouse unit per ml of un­

diluted toxin. Moon et al. (1978) found that the ratio of GW/BW can 

change depending on ambient temperature and recommended that mice be main­

tained at 37°C following the administration of the toxin. 

2. Ileal loop assay--Oriqinally ST was discovered using the ligated 

homologous small intestine loop (Smith and Halls, 1967a). Later, meas­

urement of fluid accumulation induced by ST in ileal loops was used in 

rabbits (Moon et al., 1970; Moon and Whipp, 1971; Evans et al., 1973), dog 

(Nalin et al., 1974), and swine (Moon et al., 1971). The method con­

sisted of the introduction of toxin into ligated segments of the ileum of 

the animal. Fluid secretion in response to ST was immediate and reached a 

maximum within 6 hours irrespective of dose (Evans et al., 1973). After 

an appropriate time interval, the segments were excised and both the 

volume of fluid and the length of the emptied segments were determined. 

The volume per length ratios (ml/cm) were compared. This ligated loop 

model has been used in a variety of species to test the enteropathogenici­

ty of different strains of E. coli. The accumulation of fluid in the 

loops is considered a manifestation of enteropathogenicity since non-

pathogens do not cause the accumulation of fluid. 

3. In situ perfusion technique--Toxin was tested in anesthetized 

rats by perfusing 20 cm jejunal segments at a rate of 0.5 ml/min with a 
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peristaltic pump. Net transport of water was calculated from changes in 

polyethylene glycol 4000 concentrations by the marker technique formula 

(Powell and Malawer, 1968). This method is useful for identifying toxin-

producing strains for both heat-labile and heat-stable toxins (Klipstein 

et al., 1976). 

Everted Gut Sac Preparation 

The everted sac technique for studying intestinal absorption was 

introduced in 1954 by Wilson and Wiseman. A small piece of rat or golden 

hamster gut, 2-3 cm long, was everted, filled with fluid to distend the 

wall, and tied off at both ends. The distension increased the surface 

area of the sac and reduced the thickness of the sac wall. The everted 

sac was suspended in chamber containing physiological salt solution which 

was oxygenated and maintained at 37°C. Eversion of the intestine provided 

better oxygenation of the mucosal epithelium and facilitated analysis of 

solute absorption into the relatively small volume inside the sac. At the 

end of the experimental period, the ligature was cut and fluid inside the 

sac drained, measured, and analyzed for solute. In 1958, Crane and Wilson 

modified the method to permit serial sampling of the fluid on the serosal 

side of the intestine by inserting a cannula into one end of the sac. The 

stoppered tube was used and the hydrostatic pressure adjusted allowing 

serosal fluid to rise into the upper portion of the cannula when the 

pipetting was desired. Benson and Rampone reviewed gastrointestinal 

absorption in 1966 and named that period as an era of the everted sac. 
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Some of the problems of this in vitro method are (a) maintenance of 

biological viability, (b) maintenance of structural integrity, and (c) 

artifactual influences due to unnatural absorption barriers (Wolfe et al., 

1973). 

A number of workers have investigated the extent of viability of 

excised gut preparations. There is strong evidence that the intestinal 

preparations are "viable" with respect to certain metabolic processes and 

active transport mechanisms for several hours after removal from an intact 

blood supply (Gibaldi and Grundhofer, 1972). Bamford (1966) found that 

the rate of oxygen consumption by isolated ileal and jejunal segments was 

constant over 3 hour period. Robinson and Felber (1966) showed that the 

active uptake of L-methionine and L-phenyl alanine by rat intestine at 37°C 

was maintained for 2-3 hours after isolation. Duration of viability is 

decreased by drugs that interfere with metabolic mechanisms and/or the use 

of buffered solutions that are not of optimum physiological composition 

(Wolfe et al., 1973). 

The problem of structural integrity has been considered by Gibaldi 

and Grundhofer (1972) to be even more crucial to the absorption processes 

than viability, especially where passive mechanisms predominate. In 1970, 

Levi ne et al. observed that intestinal sacs of rats are morphologically 

intact after eversion but progressively lose structural integrity. In one 

hour, there is total disruption of the epithelial border. Tissue damage 

is slower at 23°C or in tissues of animals sacrificed under anesthesia. 

However, Benet et al. (1971) suggested that the determination of the 

constancy of transfer rate as a function of time might be a valid approach 
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to assessing the functional integrity (i.e., both biological and struc­

tural) of the everted gut preparations. Taraszka (1971) observed that the 

addition of 10 mM glucose in the buffer appeared to enhance the structural 

durability of cannulated rat gut preparations examined grossly. 

One difficulty in extrapolating in vitro flux data to in vivo trans­

port of drugs is that the in vitro fluxes are measured through the 

columnar epithelium plus the underlying connective and muscle tissue 

(Wolfe et al., 1973). Therefore, the rate-limiting step for in vitro 

transport might be the intestinal musculature, a barrier that would not be 

encountered during in vivo transport. Parsons and Paterson (1960) at­

tempted to correct this problem by removing the muscular coats of the 

intestinal segment to reduce hindrances to fluid and solute movements 

across the submucosal tissues. McDougal et al. (1960) reported that the 

selective and absorptive elements in the absorption of various drugs are 

the intestinal epithelia and not the intestinal musculature. Nayak and 

Benet (1971) attempted to measure the transport rate through rat intesti­

nal muscle layer after the columnar epithelium was removed by EDTA treat­

ment and found high transfer rates with no difference in directional 

transport. Field et al. (1971) observed that the transmural potential and 

sodium transport capacity of the intestinal mucosa are better maintained 

in vitro if the muscularis is removed. A possible explanation for this 

may be that the unstripped intestine is relatively hypoxic due to an 

interference by the muscularis externa with oxygen diffusion from the 

serosal bathing solution to the basal surface of the epithelium. In sup­

port of this, Wolfe et al. (1973) found that aerating the serosal side 
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compartment, after the muscle has been stripped off, had no advantage over 

the method in which only the mucosal side was oxygenated. There was no 

damage to the epithelium or to the integrity of the submucosa of the 

stripped segment. They concluded that the use of stripped intestinal 

segments for in vitro drug transport studies would provide a well-con-

trolled, reproducible technique for elucidating the mechanism involved in 

the in vivo absorption of drugs from the intestinal lumen. 

Isolated Epithelial Cell Preparation 

The use of isolated epithelial cell preparation which can be 

handled as homogeneous suspension is a more recent technique which allows 

a more direct assessment of epithelial cell transport process (Kimmich, 

1970). Since cells can be collected in gradient from villus tip to 

crypt, this technique has permitted characterization of enzyme content, 

membrane permeability, and metabolic activity of cells as they mature 

along the villus. For example; The differentiated villus cells contain 

high activities of alkaline phosphatase and sucrase while crypt cells 

contain thymidine kinase which is the marker enzyme for the mitotically 

active cells (Fortin-Magana et al., 1970; Weiser, 1973). 

One of the earliest attempts to isolate viable epithelial cells was 

reported in 1941 by Dickens and Weil-Malherbe using the edge of a glass 

microscope slide to scrape the mucosal layer of the intestine. The 

mucosal scrapings contained epithelial cell sheets as well as individual 

cells, small cell clumps, fragmented villi, and cell organelles including 

free nuclei. Studies of the biochemical activity of these cells revealed 
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a high aerobic glycolytic capability which declined rapidly in 40 min. 

With this technique, Schultz et al. (1966) demonstrated that the epi­

thelial sheets could accumulate both alanine and 3-0-methylglucose against 

concentration gradients. However, this technique is limited by the cell 

aggregation induced by the large quantities of mucus released at the time 

of scraping (Sjostrand, 1968). 

In recent years, three major methods of isolation of the enterocytes 

have been used: 1) mechanical vibration, 2) chemical and enzymatic dis­

sociation, and 3) combinations of 1 and 2. The enzymes used are collagen-

ase (Yousef and Kuksis, 1972) or hyaluronidase (Kimmich, 1970). The 

chemicals used are citrate (Stern, 1966) or EOTA (Weiser, 1973). 

The mechanical method of isolation of the enterocytes has been de­

scribed by many investigators (Sjostrand, 1968; Harrison and Webster, 

1969). The intestine was everted over a rod which was then fastened to a 

motor drive and vibrated at high frequency. An initial 5 minute vibration 

was employed to remove mucus and loose cells near the villus tips prior 

to cell collection. Further vibrations yielded a gradient of cells from 

villus tips to crypts. The villus cells were harvested by vibrating at 

a speed of 100 cps with an amplitude of 2 mm for 30 min. The crypt cells 

could then be removed by distending the gut segment with air pressure and 

continuing vibration for 10-20 min. Cells could be removed from relative­

ly specific areas of the villus by adjusting the vibration interval 

(Webster and Harrison, 1969). Cells near the villus tips are removed 

most readily, while longer vibration periods remove progressively those 
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cells close to the crypt region. Crypt cells are not removed unless the 

gut wall is distended. 

Marsh et al. (1971) examined the isolated epithelial cells and their 

subcellular organelles using transmission and scanning electron microsco­

py. They reported that the morphology of the cell is well-preserved even 

after incubation for at least 1 hour. Kimmich (1975) estimated that 

approximately 80% of cells prepared by hyaluronidase treatment remain 

viable using trypan blue exclusion as an index of viability. This is in 

agreement with values obtained by other investigators for other prepara­

tive techniques (Stern and Reilly, 1965; Reiser and Christensen, 1971). 

However, the question of the usefulness of dye exclusion methods as indi­

cators of cell integrity was raised (Barrett and Coleman, 1973; Barrett, 

1974) due to the observation that even after osmium tetroxide fixation, 

cells of various kinds exclude trypan blue for several hours. This led 

Kimmich (1975) to place more emphasis on metabolic and transport capa­

bility as indices of cell integrity and function. He found that the 

metabolic activities of intestinal epithelial cells prepared from chickens 

exhibit linearity for period of up to 2 hours. 

Potential Antidiarrheal Drugs 

For many years, diarrhea was considered to result from hypermotility 

of the intestine and antidiarrheal drugs were designed to inhibit propul­

sive activity. However, for the diarrhea induced by bacterial entero-

toxins less attention has been paid to changes in motility of the small 

intestine as an important factor in diarrhea. Instead, interest has 



www.manaraa.com

50 

centered on biochemical events of enterotoxin activity (Raskova and 

Raska, 1980). Moon (1978) considered that even if propulsive muscular 

contractions occur in colibacillosis, it is probable that their contribu­

tion to diarrhea is much less significant than hypersecretion. Burns 

et al. (1978) found that CT, ST, and LT increased myoelectric activity in 

distal rabbit ileal loops. Pesti and Gordon (1978) tested ST filtrate on 

various smooth muscle preparations and found that the filtrates per se 

were not especially active but they did antagonize alpha-adrenergic medi­

ated relaxation. They stated that the ST filtrates behaved like the 

alpha blocker phentolamine. 

Field and McColl (1973) found that epinephrine and norepinephrine 

produced a marked and sustained drop in electric potential difference and 

short circuit current when added to isolated rabbit ileal mucosa. This 

decrease was greater in rabbit ileal mucosa incubated in HCO^-Ringer solu­

tion than in HCO^-free solution. The effect of epinephrine and nor­

epinephrine on ion transport was also studied and found to increase ab­

sorption of Na (increase in mucosa to serosa unidirectional flux) and CI 

(increase in mucosa to serosa and decrease serosa to mucosa unidirectional 

fluxes). These effects were not seen in tissue incubated in HCOg-free 

Ringer solution. However, addition of isoproterenol or propranolol did 

not produce these changes. They concluded that stimulation of alpha-

adrenergic receptors in the ileal mucosa by epinephrine and norepinephrine 

enhanced active absorption of Na and CI and reduced short-circuit current, 

probably by inhibiting net HCO^ secretion. Cyclic AMP and agents which 

increased its intracellular concentration such as theophylline have been 
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shown to increase CI secretion (Field, 1974). Field et al. (1975) found 

that epinephrine significantly decreased theophylline-induced but not cAMP 

or cholera toxin-induced CI secretion in isolated rabbit ileal mucosa. 

The base-line cAMP level was not affected by epinephrine, norepinephrine 

and isoproterenol. These results suggested that there might be factors 

other than cAMP that produced ion secretion from the intestine and that 

the effects of alpha-adrenergic stimuli on ion transport were not due to 

inhibition of cAMP accumulation. The possible role of cGMP in the action 

of epinephrine on intestinal ion transport was examined by Brasitus et al. 

(1976). They found that epinephrine increased cGMP in isolated rabbit 

ileal mucosa and this effect was blocked by atropine at a 100 but not 

at 1 pM concentration. The stimulating effect of epinephrine on cGMP was 

transient, reached a maximal value within 2 min and disappeared within 30 

min. 

Two classical systems, cholinergic and adrenergic, have long been known 

to be involved in controlling the secretion of the intestine (Wright et 

al., 1940; Florey et al., 1941). It is possible that the nonadrenergic, 

noncholinergic inhibitory (purinergic) neurons and the peptidergic neurons 

may also be involved; their precise roles are still not clear (Powell and 

Tapper, 1979). While the adrenergic agonists have been shown to increase 

water and electrolytes absorption (Field and NcColl, 1973; Field et al., 

1975; Brasitus et al., 1976), cholinergic drugs have been shown to have the 

opposite effect. Tidball (1961) found that bethanechol, a cholinergic 

agonist, increased CI and water secretion from the dog jejunum. Hubel 

(1976) reported that pilocarpine increased transmural potential differ­
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ence, reduced absorption of Na, K, HCOg and water and increased secretion 

of CI in rat jejunum. Tapper et al. (1978) observed different results 

from various doses of carbachol using rabbit ileum. Low-dose carbachol 

caused a transient increase in the potential difference and short-circuit 

current and stimulated CI secretion. These effects were inhibited by 

atropine (10~^ M). High-dose carbachol reduced the electrical parameters 

and stimulated Na and CI absorption. These effects were inhibited by 

hexamethonium (10~^ M). They proposed that high-dose carbachol stimulated 

nicotinic receptors on postganglionic sympathetic fibers causing a release 

of catecholamine and a resulting alpha-adrenergic response by the in­

testinal epithelium. However, the physiological significance of this 

response in the gut remains to be determined. 

Isaacs et al. (1976) studied the in vitro effect of acetylcholine on 

ion transport in human intestinal mucosa and found that addition of 

acetylcholine caused a short-lived elevation in cAMP 20-30 seconds after 

drug addition. Acetylcholine also caused CI secretion while unidirec­

tional and net Na transport was unaffected. Cholinergic drugs have been 

shown to increase cGMP in the intestinal mucosa (Brasitus et al., 1976; 

Tapper et al., 1976). The role of cGMP in ion transport is still in 

question since the dose of carbachol necessary to increase cGMP levels in 

intestinal mucosa was a dose that also had an alpha-adrenergic effect. In 

addition, cholinergic and adrenergic drugs have opposing effects on 

electrolyte transport, yet they both increase mucosal cGMP (Tapper et al., 

1978). Since the intestine has multiple cell types, it has been suggested 
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that more than one cyclic nucleotide pool may exist and each can be stimu­

lated by different drugs (Powell and Tapper, 1979). 

Opiate alkaloids have long been used in the treatment of diarrhea. 

Morphine and related drugs are known to increase nonpropulsive muscle 

activity by inducing rhythmic contractile activity of the circular muscle 

and inhibiting motility of the longitudinal muscle of the gut (Bass, 1968). 

The effects of these compounds on ion transport in rabbit ileum in vitro 

was studied by Racusen et al. (1978). They found that codeine reduced 

potential difference and short circuit current and increased Na absorption 

in rabbit ileal mucosa. These effects could be blocked by naloxone. 

Codeine reversed net Na secretion to net absorption in tissue pretreated 

with theophylline. McKoy et al. (1981) found similar electrical responses 

to those reported by Racusen et al. (1978) but reported that morphine in­

creased CI absorption without any change in Na transport. Enkephalin has 

been shown to increase net Na and CI absorption in rabbit ileum (Dobbins 

et al., 1980). Valiulis and Long (1973) demonstrated that morphine in­

hibited small intestinal fluid secretion stimulated by cholera toxin. 

This raised the possibility that the mechanism of antidiarrheal action of 

opiate compounds involved the mucosa and not the muscle (Powell, 1981). 

Although the opiate effect on ion transport is opposite that of cAMP, 

these compounds have no effect on basal cAMP levels or on VIP and 

theophylline-stimulated cAMP levels (Racusen et al., 1978; Dobbins et al., 

1980). The precise mechanism of action of opiate alkaloids on ion trans­

port remains to be elucidated. 
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Vasoactive intestinal peptide (VIP) occurs naturally within the in­

testinal wall (Said and Mutt, 1972). It has been shown to increase canine 

jejunal and ileal secretion (Barbezat and Grossman, 1971). Intravenous 

infusion of VIP (13 ug/min) for 15 min increased net secretion fourfold in 

both segments. The potential involvement of VIP in watery diarrheal syn­

dromes has been suspected. Schwartz et al. (1974) investigated the possi­

ble role of VIP in the pathogenesis of "pancreatic cholera" syndrome since 

VIP has been identified in the plasma and tumors of patients with this 

disease. They found that VIP, 2 ug/ml, significantly increased cAMP 

levels in rabbit ileal mucosa, increased short circuit current and caused 

net secretion of CI and Na. These effects are similar to those observed 

with cholera toxin (Krejs et al., 1978). Mailman (1978) injected VIP 

intravenously into the dog and observed mucosal blood flow in order to 

determine the contribution of vascular changes to intestinal absorption. 

He found that net Na and water absorption was reversed to secretion by VIP 

due to a significant decrease in unidirectional absorptive fluxes and 

smaller decreases in secretory fluxes. Arterial pressure and absorptive 

site blood flow were reduced in proportion to the changes in Na and water 

fluxes. Prior treatment with atropine inhibited most VIP effects while 

guanethidine pretreatment did not significantly alter the response to VIP. 

He concluded that VIP reduced gut absorption through a general cardio­

vascular effect in addition to cholinergic stimulation that released 

acetylcholine by the gut. However, VIP and PGE^-stimulated fluid secre­

tion in rat jejunum was inhibited by morphine and naloxone antagonized 

this inhibitory action of morphine (Lee and Coupar, 1980). A common 
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pathway or a final mediator of fluid secretion induced by these two 

secretagogues was suggested to be cAMP. Evidence supporting this view is 

that PGE^-induced cAMP was blocked by morphine (Collier and Roy, 1974). 

Thus, the action of VIP is similar to the effects of cholera toxin and 

E. coli LT. 

Research Objectives 

The primary objective of the present study is to determine the 

effects of E. coli heat-stable enterotoxin on chloride transport in the 

jejunum of swine, a species which is naturally susceptible to entero­

toxigenic colibacillosis. The study will be divided into two parts: 

everted gut sac studies and isolated enterocyte studies. In everted gut 

sac studies, the effect of ST on CI transport will be determined, and 

the ability of drugs such as alpha-adrenergics, muscarinic: and anti-

muscarinics, morphine and VIP to modify the effects of ST will be as-

sessed. In isolated enterocyte studies, basal and ST-exposed CI and 

45 
Ca efflux rates will be studied in villus and crypt cells. Clonidine, 

O g  
atropine and morphine will be used to modify ST effects on CI efflux 

rate constants. In addition, studies of metabolic activity of isolated 

villus cells will be performed using ^^C-glucose and ^^C-glutamic acid 

as substrates. The metabolic studies will indicate whether the isolated 

enterocytes are viable and suitable for use in efflux studies and whether 

ST modifies metabolic activity as part of its secretagogue effect. Infor­

mation derived from these studies should add to our understanding of 

enterotoxin action and assist in the development of more rational anti-

diarrheal therapy. 
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MATERIALS AND METHODS 

Enterotoxi n 

Heat-stable enterotoxin was produced and assayed by scientists at the 

National Animal Disease Center, Ames, Iowa, by previously described 

methods (Moon et al., 1978). Briefly, 1 ml of still culture of E. coli 

from agar slants was inoculated into 400 ml Trypticase soy broth in a 2 

liter Erlenmeyer flask plugged with cotton and incubated overnight on a 

shaker. One drop of antifoam agent was added to prevent foaming. After 

the overnight incubation, the broth culture was centrifuged at 10,000 x g 

and filtered through a series of millipore filters under positive pres­

sure. The millipore filters used were 1 micron, 0.45 micron, and 0.20 

micron, respectively. The ST producing strain was 1261 (class 1, serotype 

0138:k81) and the nonenterotoxigenie strain was 123 (serotype 043:k-:H28). 

The filtered broths were cultured to insure sterility and an aliquot was 

removed from the ST broth for the infant mouse bioassay. The filtrates 

were stored at 4°C until used. 

ST enterotoxin activity was assayed by injection of infant mice. The 

mice were removed from the dams on the second day of life and were used 

within 3 hours. Diluted toxin, 0.1 ml, with Evan's Blue as a marker for 

proper inoculation was injected into the stomach. The mice were then 

maintained for 4 hours at 30°C and euthanized with chloroform. The in­

testinal tract from the pyloric sphincter to the rectal sphincter was 

removed and weighed. Gut weight (GW) and the remaining body weight (BW) 

were measured. The mean GW/BW ratio of three runs of four mice each was 

used to calculate a linear regression. The natural log of the reciprocal 
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of the toxin dilution was plotted against the GW/BW ratio. The dilution 

that gave a GW/BW ratio of 0.09 was calculated and defined as 1 mouse 

unit. The undiluted broth of Strain 1261 contained 90-130 mouse units/ 

ml. 

For isolated enterocytes, cell-free supernatant fluids from the broth 

culture were diluted 1:8 with incubation buffer solution. This dilution 

produced a maximal secretory response when used in in vivo perfusion tech­

nique (Ahrens and Zhu, 1982a). For everted gut sacs, a dilution of 1:5 

with balanced salt solution was used. Preliminary studies with everted 

sacs showed that this dilution produced a consistent secretory response. 

Everted Gut Sac Studies 

Six to eight unweaned male piglets from a closed herd, 17 to 23 days 

old, were used for each drug studied. The pig was anesthetized with 

halothane and a laparotomy was performed on the left side, posterior to 

the last rib. The pylorus was isolated and a Silastic®Foley catheter 

size 14 Fr (Dow Corning Corp.) was inserted into the proximal duodénum 

until the tip extended into the proximal jejunum. The jejunum was ligated 

40 cm distal to this point and 20 ml of a 1:2 dilution of ST with saline 

(37°C) was injected at the proximal end which was then ligated. The wound 

was then closed and the pig was maintained on a heating pad. After a 45-

minute-incubation period, the loop was removed and kept in oxygenated 

balanced salt solution at 37°C. The solution contained sodium, 148 mM; 

chloride, 120 mM; potassium, 6.5 mM; bicarbonate, 26 mM; calcium, 1 mM; 

phosphate, 1.4 mM; osmolality, 300 mOsm/kg. The serosa and muscularis 

externa were stripped off by the method described by Parsons and Paterson 
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(1960) with slight modification. A glass tube, 7.5 mm in diameter, was 

inserted into the lumen of the intestine and the intestine was stripped 

by making a longitudinal incision with a blunt scalpel. The divided 

muscle layer retracted and was peeled off leaving the mucosa supported by 

a thin layer of muscularis mucosae. The intestine was then everted by 

means of a glass rod as described by Wilson and Wiseman (1954). 

The procedure for mounting everted sacs in tissue baths and sampling 

of fluids was a modification of methods described by Wilson and Wiseman 

(1954) and Crane and Wilson (1958). Pieces of everted intestine about 7 

cm long were cut. The lip end of the hollow glass tube, 5 mm in diameter 

and 10 cm long, was inserted into one end of the everted intestine and 

tied with a surgical suture. The other end of the everted intestine was 

ligated as a blind sac and tied tightly to a metal rod which then was 

placed vertically in 50 ml tissue bath (Metro Scientific, Farmingdale, 

NY). The bath contained 40 ml of a balanced salt solution and 10 ml 1261 

(ST) or 123 (control) broth oxygenated at 37°C. The blind sac was fixed 

at the lower end of the bath and the upper end of the intestinal sac was 

tied to the hollow glass tube. This permitted serial sampling of the 

fluid on the serosal side (inside) of the intestine (Figure 8). 

Four everted sacs were prepared from one animal for each experiment. 

The following series of experiments were done. 
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Figure 8. Schematic drawing of everted gut sac preparation 

Hollow glass tube (1), connected to everted small in­
testine (2) which is held tightly to the metal rod (3), 
allowed serial sampling of the fluid on the serosal side 
of the intestinal blind sac. The balanced salt solution 
was placed in a 50 ml tissue bath (5) oxygenated with O2 
(4) and kept at 37°C by a circulating pump (6). 
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1. Control vs. ST, 8 experiments 

Insorption 
36ci transport outside to inside 

Exsorption 
3Gci inside to outside 

sac 1 
control 

123 

sac 2 
toxin 

123 

1261 

sac 3 
control 

123 

sac 4 
toxin 

* 
[123 

1261 

Asterisk indicates where ^^Cl was initially added. 

The volumes of solution added at the start of each experiment were 

3.0 ml inside and 50 ml outside the sacs. Radioactive chloride was added 

at time zero, 5 yCi outside for insorption experiments, and 1.5 yCi inside 

for exsorption experiments. Mixing was accomplished by oxygenation of the 

solution. Samples of 0.1 ml were taken from both inside and outside the 

sac at 5, 10, 15, 20, 25, and 30 min and added to 10 ml of scintillation 

cocktail (Aquasol-2, New England Nuclear, Boston, MA). The counting was 

performed in a Packard model 2425 scintillation counter. All counts were 

corrected for background and counting efficiency. 

The sac was emptied at the end of the experimental period. A tissue 

sample about 2 x 5 mm was fixed in neutral buffered formalin for histo­

logical examination. The sac then was gently blotted with Whatman No. 40 

filter paper and the wet weight was determined. 

2. Control vs. VIP (2 pg/ml), 5 experiments 

Insorption 

Control Treatment 

Exsorption 

Control Treatment 

123 

123 

VIP 
123 

123 

* 

123 

123 

VIP 

123 
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VIP was put in the sac because VIP has been shown to exert its effect 

on the serosal side. 

3. Toxin vs. toxin plus VIP (2 yg/ml), 6 experiments 

Insorption Exsorption 

"oxin Toxin + VIP 

é * 

1261 

IVIPl 
* 

1261 

0X1 n 
* 

1261 

Toxin^t VIP 

4. Toxin vs. toxin plus pilocarpine (10" M), 5 experiments 

Insorption Exsorption 

Toxin Toxin + pilocarpine y 
1261 

b 
1261 

pilocarpine 

Toxin 
I y 

1261 

Toxin+ pilocarpine 
• 

1261 
pilnrarpinp 

Experiments 5-8 followed the same protocol as Experiment 4. 

5. Toxin vs. toxin plus atropine (2 x 10"^ M), 8 experiments 

6. Toxin vs. toxin plus clonidine (10"^ M), 6 experiments 

7. Toxin vs. toxin plus phenylephrine (10~^ M), 6 experiments 

8. Toxin vs. toxin plus morphine (1.2 wg/ml), 5 experiments 

Calculation and analyses 

36 
Exsorption The ratio of activity of CI detected outside to in­

side per gram of tissue at 5, 10, 15, 20, 25, and 30 minutes was deter­

mined. The average values from 5-8 experiments for each drug were calcu­

lated. Linear curves were constructed against time and slopes determined. 

Student paired t-test was used to assess the effects of toxin vs. control, 

VIP vs. control and drug (VIP, pilocarpine, atropine, clonidine, phenyl­

ephrine, or morphine) vs. toxin. 
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36 
Insorption The ratio of activity of CI detected inside to out­

side per gram tissue at 5, 10, 15, 20, 25, and 30 minutes was determined. 

Calculation and analytical methods were the same as described above for 

exsorption rates. 

Isolated Enterocytes Studies 

Two types of studies were performed using isolated enterocytes: 

determination of ion efflux rates and determination of metabolic activity. 

Buffer solutions for enterocyte studies 

Isolation medium contained 154 mM NaCl, 2 mM Tris-HCl, 3 mM KgHPO^, 

10 mM sucrose, 0.1% albumin, osmolality 310 mOsm/kg, pH 7.4, 37°C. 

Incubation medium I contained 120 mM NaCl, 20 mM Tris-HCl, 3 mM 

KgHPO^, 1 mM CaClg, 1 mM MgClg, 0.1% albumin, osmolality 285 mOsm/kg, pH 

7.4, 37°C. 

Incubation medium II contained 60 mM NaCl, 120 mM mannitol, 20 mM 

Tris-HCl, 3 mM KgHPO^, 1 mM CaClg, 1 mM MgCl,, 0.1% albumin, osmolality 

290 mOsm/kg, pH 7.4, 37°C. 

MgClg-Tris wash contained 110 mM MgClg, 2 mM Tris-HCl, osmolality 

285 mOsm/kg, pH 7.4, 4°C. 

Isolation of the enterocytes 

The vibration method was modified from that described by Harrison and 

Webster (1964) and Harrison and Webster (1969). The jejunum of the pig­

let, 60 cm long, was taken out, as in the method described above, rinsed 

with isolation medium, 37°C, and everted onto a spiral steel rod over 

which wet cellulose dialysis tubing (Spectrapor ^membrane tubing, dia 
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20.4 mm. Spectrum Medical Industries, Inc., Los Angeles, CA) had been 

placed. The upper and lower ends of the gut length were firmly tied with 

cable ties (Dannison Manufacturing Co., Framingham, MA). The diameter of 

the steel rod was 8 mm, coiled to have a spiral of 4.2 cm in width and 15 

cm in height with the upper end of the spiral attached to the vibrator. 

There were holes along the coil for air inflation. The vibration appara­

tus is shown in Figure 9. 

After the gut was everted on the spiral steel rod, it was incubated 

in oxygenated, 37°C isolation medium for 30 minutes. Then the rod was 

attached to the vibrator (Chemapec Inc., Woodbury, NY) and vibrated for a 

few minutes to get rid of the loose cells and mucus. For the determina­

tion of ion efflux rates, three fractions of enterocytes were collected. 

The first fraction consisted of mature enterocytes from the villus. The 

second fraction was a mixture of mature and immature cells. The third 

fraction was immature villus cells and crypt cells. The time for vibra­

tion varied and depended on the cloudiness of the isolation medium as an 

index of cell yield. Usually, about 30-45 minutes were required for each 

fraction. To collect the last fraction, which were mainly crypt cells, 

EDTA (1 M) was added to the medium and the intestine was inflated to a 

fully-distended state by injecting air into the steel rod. 

After vibration, each fraction of cells was treated as follows: 

a) The cells were centrifuged at 2,000 x g for 10 min, the super­

natant was decanted, and the cells were washed with 15 ml of isolation 

medium. At this stage, a 2 ml sample of cell suspension was obtained for 

sucrase and protein assays. 
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Figure 9. Schematic drawing of vibration apparatus 

The intestine was everted over a spiral rod (1) which was 
connected to a vibrator (4). Cells were collected in a 
plastic beaker (2) containing 800 ml isolation medium. 
Crypt cells were collected by inflation of the intestine 
via a syringe (3) attached to the spiral rod. 
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b) The cells were centrifuged at 1,000 x g for 3 min, decanted, and 

cells were washed with 7.5 ml isolation medium. 

c) The washed cells were centrifuged at 1,000 x g for 3min and decant­

ed. The cells were then ready for incubation with toxin and/or drug. 

All centrifugations were performed at 4°C. 

The cells from each fraction were subdivided into four groups, each 

consisting of 1 ml of cells: control, control plus drug, toxin, and toxin 

plus drug. Five ml of incubation medium containing either ^^Cl or ^^Ca 

were added to each of the four tubes, mixed and placed in a Dubnoff shaking 

bath at 37°C for 20 minutes. 

Determination of and ^^Ca effluxes 

The following procedure was described by Gall et al. (1974). After a 

20 minute incubation with isotope, the cell suspension was centrifuged and 

the cells washed twice with MgClg-Tris buffer solution at 4°C. The cells 

were returned to fresh tracer-free medium at a dilution of 1:30 by volume 

and ^®C1 or ^^Ca efflux was determined by measuring the rate of appearance 

of radioactive material in the medium. Samples of cell suspension (0.5 

ml) were obtained at the beginning and completion of the efflux period. 

Samples of supernatant (0.5 ml) were obtained at 0, 2, 4, 6, 8, 10, and 

12 min by centrifugation of 1 ml aliquots of total suspension for 1 min. 

Ten ml of scintillation cocktail was used and counting was performed in a 

Packard model 2425 scintillation counter. At the end of the experiment, a 

cell suspension was collected from each fraction and viability was meas­

ured by Trypan Blue exclusion. 
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Calculation and analyses The outflux rate constant (that portion 

of the intracellular isotope extruded per unit of time) was calculated by 

Hoffman's method (Hoffman, 1962). The basic presumption was that the 

outflux occurred as a first order process. The values of (1-supernatant/ 

suspension) x 100, the percent of radioactive material remaining within 

the cell at a given time, were plotted against time on a semi logarithmic 

scale. The rate constant was determined from the straight line obtained 

and was reported as the amount of chloride or calcium exchanged per hour. 

The values of the efflux rate constant then were compared between treat­

ments and analyzed using analysis of variance. 

Determination of ^^C-glucose and ^^C-glutamic acid metabolic activity by 

isolated enterocytes 

Only the first fraction of the cells from the upper villus were used 

to determine the metabolic activity. After 20 min incubation, 0.5 ml of 

dispersed cells were put into 2 ml incubation vials. ^^C-glucose or ^^C-

glutamic acid, 2 uCi, was incubated with the cells and the incubation 

vials were attached to the apparatus used for the continuous trapping of 

as described by Brendel and Meezan (1974). The apparatus is illus­

trated in Figure 10. Reaction vials were 2-ml bottles stoppered with 

rubber serum stoppers. PE 20 polyethylene tubing carried oxygen to each 

reaction vial and PE 50 polyethylene tubing carried from the reac­

tion vials to the trapping vials which consisted of scintillation vials 

containing 1.5 ml of 0.3 N sodium hydroxide with 40 drops of 5% Triton 

X-100 as a trapping solution. 
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Figure 10. Schematic diagram of CO2 collection apparatus 

A. Gas flow through a single reaction vial and collection 
vial. 

B. Relationship of apparatus components. 
(1) O2 moistening chamber; (2) gas distribution mani­
fold; (3) incubation vial; (4) polyethylene line; (5) 
stainless steel arm; (6) CO2 trapping vial; (7) 
aluminum incubation block (redrawn from Brendel and 
Meezan, 1974). 
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14 The COg collection apparatus permitted the continuous monitoring of 

production from ten separate reaction mixtures simultaneously as 

shown in Figure 11. After the reaction vials and the trapping vials were 

connected, the whole apparatus was placed in a Dubnoff shaking bath at 

37°C. At an interval of 30 min the shaker was stopped, and each scintil­

lation vial containing trapping solution unscrewed and replaced with a 

fresh vial in turn. The rates of ^^CO^ production could be followed over 

a period of 3 hours and collection was interrupted for only an in­

significant 10-15 sec period every 30 min. Ten ml of scintillation cock­

tail were simply added in the collected and counting was performed 

in a Packard model 2425 scintillation counter. 

Calculation and analyses The metabolic activity was calculated 

as cumulative specific activity per mg protein. The maximal activity 

produced by the control at time 180 min was set as 100%. The activity of 

the other three groups (control plus ouabain, toxin and toxin plus 

ouabain) was then calculated according to and compared with this 100% 

maximal value. The means were averaged from four experiments for glucose 

and six for glutamic acid. The analysis of variance was used to determine 

the significant difference between each treatment. 

Assays 

Sucrase determination Sucrase determination was performed by the 

method of Dahlqvist (1968). The method is based upon the hydrolysis of su­

crose to glucose and fructose by sucrase. Glucose oxidase-O-dianisidine 

was used to develop color with free glucose. The color developed was read 

on a Beckman Spectrophotometer (Beckman Instruments, Inc., Fullerton, CA) at 

420mu against the reagent blank and compared to a standard curve of glucose. 
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Figure 11. Apparatus for CO2 collection from ten small incubation vials 
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Disaccharidase activity was calculated as units per gram protein. 

One disaccharidase unit is defined as the activity hydrolyzing 1 ymole of 

disaccharide per minute. 

Protein determination Concentration of protein was performed by 

the method of Lowry et al. (1951). Briefly, two steps lead to the final 

color with protein: a) reaction with copper in alkali and b) reduction of 

the phosphomolybdic-phosphotungstic reagent (Folin phenol reagent) by 

the copper-treated protein. The color was measured spectrophotometrically 

at 660 mu against the reagent blank. Bovine albumin standard solution was 

used to construct a standard curve. 

Viability assay Cell viability was determined by a method modi­

fied from that described by Phillips (1973). A 0.1% aqueous solution of 

Trypan Blue was used. The dilution of dye solution and cell suspension 

ranged from 1:20 to 1:5 depended on the amount of cells harvested. A drop 

of cell suspension was placed on a hemocytometer and a viability count was 

made immediately under a light microscope. The number of stained cells 

and nonstained cells in a given area on the hemocytometer was counted. 

The percentage of viable cells was calculated as the ratio of nonstained 

eel Is/(stained + nonstained cells) x 100. 

Drug sources 

1. Atropine sulfate (Sigma®, St. Louis, MO). 

2. Clonidine HCl (Boehringer Ingelheim, Elmsford, NY). 

3. Morphine sulfate (Lilly, Indianapolis, IN). 

4. Ouabain (Sigma^ St. Louis, MO). 

5. Phenylephrine (SigmaSt. Louis, MO). 
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6. Pilocarpine HCl (Sigma®, St. Louis, MO). 

7. Vasoactive Intestinal Peptide (VIP) (Sigma®, St. Louis, MO). 

Radioisotope sources 

All radioisotopes used were purchased from New England Nuclear 

(Boston, MA). 

1. D-[14C(U)]Glucose, 1-5 mCi/mmol. 

2. L-[14C(U)]Glutamic acid, 250 mCi/mmol. 

3. Calcium-45, calcium chloride in water, 4-30 Ci/g calcium. 

4. Chloride-36, 0.2-3.0 M HCl solution, 1-5 mCi/g chlorine. 
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RESULTS 

Everted Gut Sac Studies 

Microscopic examination 

Histological examination of intestinal mucosa taken immediately prior 

to the suspension of the everted sacs in the chamber revealed no signifi­

cant changes in the morphology of the cells (Figures 12 and 13). This 

indicated that the in vivo incubation for 45 min with the toxin and the 

mechanical manipulation did not damage the cells. Light microscopic 

examination at low power showed a normal pattern of villi, lamina propria 

and crypts. The external and internal muscle layers were stripped off so 

only the muscularis mucosae and submucosa were left intact. The striated 

border formed by microvilli was clearly visible in the villus tips 

(Figures 12 and 13). The columnar epithelial cells showed a normal pat­

tern with the frequent occurrence of goblet cells. The lamina propria 

contained mononuclear cells, connective tissues and capillaries. 

After the experimental period of at least 45-60 min, most of the 

villi appeared intact with a striated border of microvilli (Figure 14), 

although some preparations showed denudation of the epithelial cell 's and 

infiltration of mononuclear cells into the connective tissues of the 

lamina propria. Edematous spaces were occasionally found in the lamina 

propria of the villus and crypt regions (Figure 15). However, detailed 

examination of the intact villus and crypt cells revealed no significant 

changes in the architecture of the cells. 
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Figure 12. Jejunum of 3-week-old pig incubated in vivo with filtrate 
of nonenterotoxigenie strain of E. coli for 45 minutes 
(Eosin, 250X) 

Figure 13. Jejunum of 3-week-old pig incubated in vivo with filtrate 
of ST producing strain of E. coli for 45 minutes (Eosin, 
250X) 
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Figure 14. Specimen of everted gut sac after 60 minute-incubation at 
37°C (Eosin, 250X) 

Epithelial lining appeared intact with a striated border 
of microvilli. 

Figure 15. Specimen of everted gut sac after 60 minute-incubation at 
37°C (Eosin, 250X) 

Edematous spaces were found in lamina propria of the villus 
and crypt regions. 
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Fluid volume 

There was no significant change in volume of solution inside the sac 

during the 30-min experimental period. The initial volume put in the sac 

was 3.0 ml, the total volume taken out was 0.6 ml (0.1 ml at 5, 10, 15, 

20, 25, and 30 min) and the volume left ranged from 2.3-2.5 ml. This re­

vealed no gross change of water transport to the sac interior during the 

experimental period. The wet weight of the sacs from experiment to ex­

periment ranged from 0.70 g to 1.15 g. However, the variation of sac 

weight within an experiment was less than 0.20 g, 

Exsorption of ^^Cl 
OC 

Chloride exsorption was determined as the ratio of CI activity 

outside the sac to inside per gram of tissue. Toxin increased chloride 

exsorption significantly (p < 0.005) compared to control (Table 1 and 

Figure 16). Slopes of activity ratio per unit time were compared. The 

exsorption slopes of control and toxin were 5.2 x 10"^ and 6.9 x 10"^\ 

respectively (Table 2). 

Vasoactive intestinal peptide (VIP) significantly increased chloride 

exsorption from everted gut sacs (Table 3 and Figure 17). The exsorption 

slope of VIP treated sac was 7.1 x 10"^ compared to 5.6 x 10"^ of control 

(Table 2). 

Addition of VIP to ST-treated everted sacs did not change the exsorp­

tion rate of chloride compared to toxin alone (Table 4 and Figure 18). 

The slopes were 6.8 x 10"^ for toxin alone and 6.7 x 10"^ for toxin plus 

VIP (Table 2). Thus, there was no additive or antagonizing effect of VIP 

on enterotoxin-stimulated efflux. 
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Table 1. Effects of 1261 ST toxin on the insorption and exsorption of 
36ci from porcine everted jejunal sacs 

Time 
(min) 

Insorption^ 

C
SJ 
o

 

X
 Exsorptionb X 103 

Time 
(min) Control Toxin Control Toxin 

5 1.97±0.44 1.89±0.35 1.55±0.29 2.71±0 .31 

10 4.19±0.73 4.98±1.01 3.83±0.58 6.35±0 .69 

15 7.25±1.35 9.48+1.26 6.30±0.88 9.61±0 

C
M

 00 

20 11.66±2.04 13.10±1.48 8.79±1.24 +1 C
O

 o
 

C
O

 

.29 

25 15.10±1.96 20.84±2.46 11.75±1.85 15.55±1 .52 

30 19.07±2.52 28.40±3.04 14.35±1.86 +1 00 o
 

o
 

C
M

 

.65 

^Ratio of ^®C1 activity inside to outside per gram tissue. Mean 
(±SEM) from 8 animals. 

^Ratio of 3^C1 activity outside to inside per gram tissue. Mean 
(±SEM) from 8 animals. 

Pilocarpine, a muscarinic drug, added to ST-treated everted sacs did 

not augment chloride exsorption compared to toxin alone (Table 5 and 

Figure 19). The exsorption slope of toxin was 7.9 x 10"^ and of toxin 

plus pilocarpine was 7.5 x 10"* (Table 2). 

Atropine, an anticholinergic drug, added to toxin-treated everted 

sacs did not have any significant effect on chloride exsorption (Table 6 

and Figure 20) compared to toxin alone. The slopes of chloride exsorption 

from toxin-treated sacs were 6.9 x 10~* and 7.3 x 10"*, respectively 

(Table 2). 

Addition of clonidine, an alpha-2 adrenergic agonist, to toxin-

treated sacs tended to reduce chloride exsorption rate though the reduc­

tion was not significantly different when compared to toxin alone (Table 7 
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Figure 16. Effects of 1261 ST toxin on the exsorption and insorption 
of 36ci from porcine everted jejunal sacs 

^^Cl cpm X 10^ g"^ = exsorption 

^^Cl cpm X 10^ g~^ = insorption 

Each point represents the mean (±SEM) from 8 animals. 
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or 
Table 2. Comparison of the rate of CI insorption and exsorption in 

everted sacs exposed to ST and various drugs 

Treatment 

Insorption® 

Slope (xl03) 

Exsorption^ 

Slope (xl04) 

Control 
ST 

Control 
VIP 
2 yg/ml 

ST 
ST + VIP 
2 pg/ml 

ST 
ST + pilo­
carpine 
10-5 M 

8 
8 

6 
6 

6 
6 

5 
5 

7.0 
10.5 

9.8 
9.8 

12.6 
12.6 

12.5 
12.3 

<0.01 

N.S. 

N.S. 

N.S. 

5.2 
6.9 

5.6 
7.1 

6 . 8  
6.7 

7.9 
7.5 

<0.005 

<0.005 

N.S. 

N.S. 

ST 8 
ST + atropine 8 
2x10-5 M 

8.8 
10.6 

N.S. 6.9 
7.3 

N.S. 

ST 
ST + cloni-
dine 10-6 M 

6 
6 

10.4 
10.9 

N.S. 6.1 
5.8 

N.S. 

ST 6 
ST + phenyl- 6 
ephrine lO'^M 

ST 5 
ST + morphine 5 
1.2 ug/ml 

12.7 
10.2 

13.2 
12.0 

N.S. 

7.2 
8.1 

7.3 
6 . 8  

< U . U U 5  

N.S. 

^Ratio of ^®C1 activity inside to outside per gram tissue. 

' 'Ratio of ^^Cl activity outside to inside per gram tissue. 
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Table 3, Effects of VIP on the insorption and exsorption of from 
porcine everted jejunal sacs 

Time 
(min) 

Insorption® X 10? Exsorption^ 
C

O
 o

 

X
 

Time 
(min) Control Vipc  Control VIP 

5 1 .6U0.28 2.11+0.27 1 .80±0.24 2 .24±0.40 

10 6 .44±1.26 6 .99±1.16 4 .30±0.53 5 .56±0.83 

15 11.28±1.81 11.23±1.56 7.03±0.92 9.28±1.20 

20 16.43±2.45 16.73±1.89 9 .92±1.37 12.74±1.61 

25 21.1712.86 22.38±2.89 12.72±1.79 16.44±2.08 

30 25.88±3.70 26.15±3.13 15.88±2.17 19.94+2.43 

^Ratio of ^^Cl activity inside to outside per gram tissue. Mean. 
(±SEM) from 6 animals. 

Ratio of CI activity outside to inside per gram tissue. Mean 
(±SEM-) from 6 animals. 

^Concentration of VIP in serosal solution was 2 vg/ml. 

36 
Table 4. Effects of VIP on the insorption and exsorption of CI from ST-

exposed porcine everted jejunal sacs 

Time 
(mi n ) 

Insorption^ X
 o
 

ro
 

Exsorption^ X
 o
 

C
O

 

Time 
(mi n ) Toxin Toxin+Vipc Toxin Toxin+VIpc 

5 2 .41±0.22 2 .74±0.90 1 .98±0.27 1 .98±0.19 

10 7 .83±0.78 9 .72+1.83 4 .88±0.60 4 .80+0.46 

15 14.34±1.57 15.47±2.03 8 .03±0.91 8.13=0.69 

20 20.91±2.20 21.56±3.64 11.68±1.43 11.37±0.91 

25 27.46±2.27 28.48±4.12 15.27+1.95 14.75±1.28 

30 33.32+3.04 34.41±4.60 18.92+2.41 18.78±1.74 

^Ratio of ^^Cl activity inside to outside per gram tissue. Mean • 
(±SEM) from 6 animals). 

^Ratio of ^^Cl activity outside to inside per gram tissue. Mean 
(±SEM) from 6 animals). 

^Concentration of VIP in serosal solution was 2 vg/ml. 
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Figure 17. Effects of VIP on the exsorption and insorption of Cl 

from porcine everted jejunal sacs 

Concentration of VIP in serosal solution was 2 yg/ml. 

^^Cl cpm X 10^ g~^ = exsorption 

^®C1 cpm X 10^ g~^ = insorption 

Each point represents the mean (±SEM) from 6 animals. 
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Figure 18. Effects of VIP on the exsorption and insorption of Cl 

from ST-exposed porcine everted jejunal sacs 

Concentration of VIP in serosal solution was 2 ug/ml. 

^^Cl cpm x 10^ g"^ = exsorption 

^^Cl cpm x 10^ g'^ = insorption 

Each point represents the mean (±SEM) from 6 animals. 
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Table 5. Effects of pilocarpine on the insorption and exsorption of CI 

from ST-exposed porcine everted jejunal sacs 

Insorption^ X 10? Exsorption^ X 103 

Time 
(min) Toxin 

Toxin+pilo-
carpineC Toxin 

Toxin+pilo-
carpineC 

5 3.09±0.45 2.63±0.58 3.86±1.14 2.80±0.30 

10 9.76±2.06 9.03±0.80 7.38±1.43 6.38±0.50 

15 15.84±2.63 14.98±1.41 11.56±1.93 10.14±0.50 

20 22.45±2.62 21.56±1.97 15.26±2.19 13.58±1.04 

25 27.55+3.94 25.98±2.24 19.24±2.03 17.68±0.99 

30 34.84±4.52 34.03±2.35 23.92±1.88 21.70±1.37 

^Ratio of ^^Cl activity inside to outside per gram tissue 
(±SEM) from 5 animals. 

.  Mean 

^Ratio of ^^Cl activity outside to inside per gram tissue 
(±SEM) from 5 animals. 

.  Mean 

' 'Concentration of pilocarpine in mucosal solution was 10" ̂  M. 

Table 36 6. Effects of atropine on the insorption and exsorption of CI 
from ST-exposed porcine everted jejunal sacs 

Insorption^ X 10^ Exsorption^ X 10^ 

Time 
(mi n ) Toxin 

Toxin+ 
atropine^ Toxin 

Toxin+ 
atropine^ 

5 1.63±0.34 2.65±0.49 2.91+0.62 2.48±0.26 

10 4.56±0.34 6.53±0.89 5.89±1.20 5.51±0.53 

15 8.39+0.98 10.60±1.95 8.98+1.73 8.56±0.70 

20 13.43+1.56 16.10+2.14 12.59+2.32 12.54±1.09 

25 19.66+2.54 22.37±3.14 16.61±2.74 • 16.41±1.43 

30 22.46+2.95 29.20+4.06 19.31+3.06 20.68+1.97 

^Ratio of ^^Cl activity inside to outside per gram tissue. Mean 
(±SEM) from 8 animals. 

^Ratio of ^^Cl activity outside to inside per gram tissue. Mean 
(±SEM) from 8 animals. 

0 ""5 Concentration of atropine in mucosal solution was 2 x 10" M. 
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Figure 19. Effects of pilocarpine on the exsorption and insorption of 
36ci from ST-exposed everted jejunal sacs 

Concentration of pilocarpine in mucosal solution was 10"^ 
M. 

^^Cl cpm X 10^ g~^ = exsorption 

^^Cl cpm X 10^ g ^ = insorption 

Each point represents the mean (±SEM) from 5 animals. 
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Figure 20. Effects of atropine on the exsorption and insorption of 
36ci from ST-exposed porcine jejunal sacs 

Concentration of atropine in mucosal solution was 2 x 10"^ 
M. 

^^Cl cpm X 10^ g~^ = exsorption 

^^Cl cpm X 10^ g~^ = insorption 

Each point represents the mean (±SEM) from 8 animals. 
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and Figure 21). The exsorption slope was 6.1 x 10~^ for toxin and 5.8 x 

10"^ for toxin plus clonidine (Table 2). 

Phenylephrine, an alpha-1 adrenergic agonist, increased chloride 

exsorption from the sac treated with ST toxin (Table 8 and Figure 22). 

Table 2 shows the slopes of chloride exsorption from toxin-treated sacs to 

-4 -4 be 7.2 X 10 compared to 8.1 x 10 from toxin plus phenylephrine-treated 

sacs. These values were significantly different at the level of p < 

0.005. 

Addition of morphine to the toxin-treated sacs reduced chloride ex­

sorption rate compared to toxin alone (Table 9 and Figure 23). However, 

there was no statistically significant difference. The exsorption slopes 

for toxin-treated was 7.3 x 10"^ and 6.8 x 10"^ for toxin plus morphine 

(Table 2). 

Insorption of ^^Cl 

Chloride insorption was determined as the ratio of CI activity in­

side the sac to outside per gram tissue. Toxin increased chloride insorp­

tion significantly compared to control (Table 1 and Figure 16). The mean 

insorption rate constants from control and toxin-treated everted sacs were 

7.0 X 10"^ and 10.5 x 10"^, respectively (Table 2). 

VIP significantly increased chloride exsorption from the everted sacs 

but had no effect on chloride insorption compared to control (Table 3 and 

Figure 17). The mean rate of chloride insorption was 9.8 x 10" for both 

control and VIP-treated sacs (Table 2). 

Addition of VIP to toxin-treated sacs did not change chloride in­

sorption rate compared to toxin alone as shown in Table 4 and Figure 18. 
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Table 7. Effects of clonidine on the insorption and exsorption of CI 

from ST-exposed porcine everted jejunal sacs 

Insorption^ 

C
M

 O
 

X
 Exsorption^ X 103 

Time 
(min) Toxin 

Toxin+ 
clonidine^ Toxin 

Toxin+ 
clonidine^ 

5 2.17±0.21 2.54±0.43 1.90±0.15 3.12±0.14 

10 5.63±1.07 7.03+1.01 4.60±0.35 5.95±1.45 

15 10.94±1.22 13.13±2.00 7.43±0.62 8.61+1.40 

20 17.04±1.66 17.73±2.08 10.48±0.85 11.50±1.75 

25 21.98±1.87 23.97±2.56 13.48±1.12 14.57±1.99 

30 27.37±2.29 29.50±2.95 17.35±1.57 17.78±2.18 

^Ratio of ^^01 activity inside to outside per gram tissue. Mean 
(±SEM) from 6 animals. 

^Ratio of ^^Cl activity outside to inside per gram tissue. Mean 
(+SEM) from 6 animals. 

^Concentration of clonidine in mucosal solution was 10"^ M. 

Table 8. Effects of phenylephrine on the insorption and exsorption of 
36ci from ST-exposed porcine everted jejunal sacs 

Insorption^ X 102 Exsorption^ X
 o
 

C
O

 
Time 
(min) Toxin 

Toxin+pher.yl-
ephrineC 

T 
Toxin 

oxin+phenyl-
ephrineC 

5 1.24±0.30 2.76±0.69 2.82±0.63 3.78±1.48 

10 4.48±1.17 6.52±1.31 6.15±1.28 7.67±2.46 

15 11.71±2.67 11.32±2.42 9.72±1.94 11.73±3.71 

20 19.06±4.28 17.39±3.95 13.35±2.61 15.40±4.13 

25 25.09±5.70 23.08±5.56 16.58±3.04 19.92±5.70 

30 31.78+7.05 27.31+5.67 21.05±4.06 24.17±5.47 

^Ratio of ^^Cl activity inside to outside per gram tissue. Mean 
(±SEM) from 6 animals. 

^Ratio of ^^Cl activity outside to inside per gram tissue. Mean 
(±SEM) from 5 animals. 

c 5 Concentration of phenylephrine in mucosal solution was 10" M. 
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Figure 21. Effects of clonidine on the exsorption and insorption of 
36ci from ST-exposed porcine everted sacs 

Concentration of clonidine in mucosal solution was 10"^ M. 

^^Cl cpm X 10^ g~^ = exsorption 

^^Cl cpm X 10^ g~^ = insorption 

Each point represents the mean (±SEM) from 6 animals. 
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Figure 22 .  Effects of phenylephrine on the exsorption and insorption 
of 36ci from ST-exposed porcine everted sacs 

Concentration of phenylephrine in mucosal solution was 
10-5 M. 

^^Cl cpm X 10^ g~^ = exsorption 

^^Cl cpm x 10^ g"^ = insorption 

Each point represents the mean (±SEM) from 6 animals. 
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Table 9. Effects of morphine on the insorption and exsorption of CI 

from ST-exposed porcine everted jejunal sacs 

Insorption® X 10? Exsorption^ X 10^ 

Time 
(min) Toxin 

Toxin+ 
morphine^ Toxin 

Toxin+ 
morphi neC 

5 2.75±1.03 2.58±0.74 2.24±0.47 2.52±0.37 

10 7.67±1.76 7.42±1.24 5.44±0.91 5.54±0.69 

15 13.51±2.88 13.61±2.29 8.60±1.31 8.64±1.02 

20 21.45±3.95 19.62±3.08 12.50±1.93 12.24±1.34 

25 28.65±5.56 25.78±4.08 16.56±2.57 15.48±1.38 

30 34.67±7.23 32.58+5.80 20.22±3.03 19.58±1.62 

A  3 6  
Ratio of CI activity inside to outside per gram tissue. Mean 

(±SEM) from 5 animals. 

^Ratio of ^^Cl activity outside to inside per gram tissue. Mean 
(±SEM) from 5 animals. 

^Concentration of morphine in mucosal solution was 1.2 ug/ml. 

Toxin-treated sacs showed a mean chloride insorption rate of 12.6 x 10" . 

The same rate was observed in the presence of toxin plus VIP (Table 2). 

Pilocarpine did not change chloride insorption rate of toxin-treated 

sacs (Table 5 and Figure 19). The rate of chloride insorption was 12.5 x 

—  3  — 3  
10" for toxin alone compared to 12.3 x 10" for toxin plus pilocarpine 

(Table 2). Thus, pilocarpine did not exhibit an additive effect to toxin 

either on chloride exsorption or chloride insorption from the everted 

sacs. 

Addition of atropine increased chloride insorption rate from 8.8 x 

10"^ in toxin-treated sacs to 10.6 x 10"^ (Table 2). However, the differ­

ence was not significant (Table 6 and Figure 20). 
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Figure 23. Effects of morphine on the exsorption and insorption of 
36ci from ST-exposed porcine everted jejunal sacs 

Concentration of morphine in mucosal solution was 1.2 
yg/ml. 

^^Cl cpm X 10^ g~^ = exsorption 

^^Cl cpm X 10^ g~^ = insorption 

Each point represents the mean (±SEM) from 5 animals. 
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Clonidine did not have any significant effect on chloride insorption 

when added to toxin-treated sacs (Table 7 and Figure 21). The rate of 
- 3  o  

chloride insorption was 10.4 x 10" for toxin-treated sacs and 10.9 x 10" 

for toxin plus clonidine (Table 2). 

Addition of phenylephrine to everted sacs treated with toxin signifi­

cantly decreased chloride insorption (Table 8 and Figure 22). Chloride 

insorption rate produced by the toxin was 12.7 x 10" compared to 10.2 x 

- 1 
10" when phenylephrine was added (Table 2). Thus, phenylephrine sig­

nificantly increased chloride exsorption and decreased chloride insorption 

from everted sacs. 

Morphine reduced chloride insorption rate from 13.2 x 10" in toxin-

treated sacs to 12.0 x 10" (Table 2). This decrease was not statistical­

ly significant (Table 9 and Figure 23). 

Isolated Enterocyte Studies 

Microscopic examination 

After three fractions of cells were isolated, a section of intestine 

was taken for histological examination. There was complete denudation of 

the villi and absence of villus epithelial cells. Many but not all of 

the mucosal crypts were devoid of cells (Figures 24 and 25). There was 

infiltration of mononuclear cells in the lamina propria. The results 

indicated that mechanical vibration effectively removed enterocytes from 

the intestinal mucosa. 
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Figure 24. Jejunum of 3-week-old pig after vibration (Eosin, 250X) 

Note complete denudation of the villi and absence of 
villus and crypt cells. 

Figure 25. Jejunum of 3-week-old pig after vibration (Eosin, 250X) 

There was complete denudation of the villi and absence of 
villus cells. Some of the crypt cells are intact. 
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Trypan Blue exclusion test 

More than 70% of the isolated enterocytes excluded Trypan Blue when 

examined at the end of each experiment. This suggested that the majority 

of cells remained viable throughout the experimental period. 

Sucrase activity assay 

To determine the origin of the cells isolated in each fraction, 

sucrase activity was determined. The results are summarized in Table 10. 

Cells in fraction one contained the highest activity of sucrase. The 

average value was 103.34+7.71 units/g protein which indicated that cells 

in the first fraction were mature villus cells. Cells in the fraction two 

and fraction three contained sucrase activity of 64.05±5.69 and 32.25±3.75 

units/g protein, respectively. The low value obtained for sucrase activi­

ty in the third fraction indicates that this fraction was composed of 

immature cells from the lower villus and crypt regions. 

Chloride efflux rate determination 

Chloride efflux rate constants for control and toxin treated entero­

cytes obtained from fractions one, two, and three are shown in Figures 26, 

27, and 28, respectively. The curves were plotted as logarithmic values 

of % CI remaining in the cells versus time. At time zero, the percent of 

radioactive chloride remaining in the cells was set at 100%. The radio­

active chloride remaining in the cells declined linearly with time as 

chloride moved out of the cells. The slopes of the lines were determined 

as chloride efflux rate constants (amount of chloride exchanged per hour). 

In most experiments, about 10% of the initial chloride radioactivity was 

left in the cells at 12 min. 
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Table 10. Sucrase activity in isolated enterocytes (units/g protein; 
values are mean (±SEM) from 19 animals) 

Fraction I = 103.34±7.7T 

Fraction II = 64.05±5,69 

Fraction III = 32.25±3.75 

Table 11 summarizes the values of chloride efflux rate constants from 

control and toxin-treated cells in fractions one, two, and three. There 

was no difference in chloride efflux rate constants in cells obtained from 

fraction one compared with those obtained from fractions two or three. 

Thus, chloride efflux rate constants were the same in villus and crypt 

cells. The efflux rates of chloride were -6.32±0.44 from upper villus, 

-6.73±0.45 from lower villus and -7.02±0.46 from crypt cells. Addition 

of toxin significantly increased chloride efflux rate to levels twice 

those of control. There was no difference in the effect of toxin on 

villus compared to crypt cells. The values of efflux rates of chloride 

from toxin-treated enterocytes isolated from upper villus, lower villus, 

and crypt cells were -12.91±1.19, -12.14+0.77, and -12.34±1.60, respec­

tively. 

Effect of drugs on chloride efflux rate constants from isolated entero­

cytes 

Atropine Table 12 summarizes the effects of atropine on chloride 

efflux rates in control and ST-exposed cells. In fraction one, the 

chloride efflux rate constant in control enterocytes was -6.02±0.75. 

Atropine, when added to control enterocytes, did not significantly change 
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Figure 26. Comparison of chloride efflux rate constants in control 
and ST-exposed upper villus cells 

Each point represents mean (±SEM) from 19 animals. 
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Figure 27. Comparison of chloride efflux rate constants in control 
and ST-exposed lower villus cells 

Each point represents mean (±SEM) from 19 animals. 
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Figure 28. Comparison of chloride efflux rate constant in control and 
ST-exposed crypt cells 

Each point represents mean (±SEM) from 19 animals. 
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Table 11, Effects of ST on ^^Cl efflux rate constants from enterocytes® 

Fraction Control Toxin p < 

I -6.32±0.44 -12.91±1.19 0.001 

II -6.73±0.45 -12.14±0.77 0.001 

III -7.02±0.46 -12.34±1.60 0.01 

Values are mean (±SEM) from 19 animals. 

Effect of atropine or 
exposed enterocytes® 

Table 12. Effect of atropine on CI efflux rate from control and ST-

Control Toxin . 
Fraction Control +atropineb Toxin +atropine 

I -6.02±0.76 -5.60±0.39 -12.12±1.36* -11.24±1.01* 

II -7.81+0.81 -8.21±1.05 -13.47±1.44* -9.8U1.18 

III -6.66±0.70 -6.12+0.48 -13.28±1.90* -11.71±0.78* 

^Values are given as mean (±SEM) of efflux rate constants from 7 
animals. 

'^Concentration of atropine in incubation medium was 2 x 10"^ M. 
* 

chloride efflux rate. Toxin increased chloride efflux rate significantly 

to -12.12+1.36 compared to control. When atropine was added to toxin-

treated enterocytes, the efflux rate was reduced, though not significant­

ly, compared to toxin alone. 

In fraction two, the chloride efflux rate constant was -7.81±0.81 in 

control enterocytes. Addition of atropine to control did not significant­

ly change the efflux rate of chloride. Addition of toxin significantly 

increased the chloride efflux rate to -13.47+1.44 compared to control. 
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Addition of atropine to toxin-treated enterocytes decreased the efflux 

rate to -9.81±1.18, but the decrease was not significant. 

In fraction three, the chloride efflux rate constant was -6.56±0.70 

in control enterocytes. Addition of atropine to control did not change 

the efflux rate of chloride. Toxin increased chloride efflux rate sig­

nificantly from -6.66±0.70 in control to -13.28±1.90. Atropine addition 

to toxin-treated enterocytes did not significantly change chloride efflux 

rate compared to toxin alone. 

In summary, the addition of atropine, a muscarinic blocker, did not 

alter basal chloride efflux rates in enterocytes. Although ST-augmented 

secretion of chloride was reduced by atropine in all fractions, the de­

crease was not significant. 

Clonidine The effect of clonidine, an alpha-2 adrenergic agonist, 

on chloride efflux rate is summarized in Table 13. In fraction one, the 

chloride efflux rate constant in control enterocytes was -5.56±0.90. 

Clonidine did not have any effect on chloride efflux rate in control 

cells. Toxin doubled the chloride efflux rate to -10.77±1.84 and this 

effect was not altered by clonidine. 

In fraction two, the chloride efflux rate constant was -6.18±0.38 for 

control and -10.62±0.89 for ST-exposed entercytes. Clonidine reduced 

toxin-augmented efflux by approximately 10% but the reduction was not 

significant. Similar results were obtained in fraction three except that 

clonidine inhibited ST-stimulated chloride by more than 20%. This pro­

duced a chloride efflux rate which was intermediate between control and ST 

and not significantly different from either. 
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Table 13. Effect of clonidine on CI efflux rate from control and ST-

exposed enterocytes^ 

Control+ Toxin+ 
Fraction Control clonidineb Toxin clonidineb 

I -5.56±0.90 -5.93±0.84 -10.77±1.84* -10.27+1.82* 

II -5.18±0.38 -7.32+0.85 -10.62±0.89* -9.15±0.83* 

III -6.62+0.73 -6.66±0.80 -10.94+1.28* -8.49±2.05 

^Values are given as mean (±SEM) of efflux rate constants from 5 
animals. 

'^Concentration of clonidine in incubation medium was 10"^ M. 
•k 

p < 0.05 compared to control. 

Morphine Table 14 summarizes the effects of morphine on chloride 

efflux rates in control and toxin-exposed enterocytes. The value of con­

trol chloride efflux rate in cells from fraction one was -6.79+0.86. 

Morphine did not significantly change chloride efflux rate in control 

enterocytes. Addition of toxin to control enterocytes significantly in­

creased the chloride efflux rate to -16.89+2.01. When morphine was added 

to toxin-treated enterocytes, chloride efflux rate was significantly re­

duced to -10.62±1.60. 

The control chloride efflux rate in cells from fraction two was 

-5.43±Q.65. Addition of toxin significantly increased chloride efflux 

rate to -12.70±0.96 compared to control. Morphine did not have any effect 

on control or toxin-exposed enterocytes. 

Cells from fraction three had a chloride efflux rate of -7.16±0.85. 

Morphine did not alter this basal rate of transport. Toxin significantly 

increased chloride efflux rate to -14.68±2.39 compared to control. The 
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36 Table 14. Effect of morphine on CI efflux rate from control and ST-
exposed enterocytes^ 

Control+ Toxin+ 
Fraction Control morphine*^ Toxin morphine^ 

I -6.79±0.86 -4.82+2.04 -16.89±2.01* -10.62±1.60** 

II -6.43±0.65 -8.45±1.00 -12.70+0.96* -13.69±1.84* 

III -7.16±0.85 -7.42±1.19 -14.68+2.39* -9.75±1.59 

^Values are given as mean (±SEM) from 7 animals. 

^Concentration of morphine in incubation medium was 1.2 yg/ml. 
* 

p < 0.05 compared to control. 

p < 0.05 compared to toxin. 

effect of morphine on ST-stimulated efflux was similar to that observed 

for clonidine in immature enterocytes. Chloride efflux was reduced to a 

point between basal and maximal secretion and was not significantly dif­

ferent from either. 

Calcium efflux rate determination 

The effects of ouabain and ST toxin on calcium efflux rates are shown 

in Table 15. Results are the average from two experiments. The efflux 

rate of calcium was low compared to chloride efflux rate from enterocytes. 

Although there were some variations in the efflux rate of calcium among 

fraction one, two, and three, there was no significant difference. When 

ouabain was added to control enterocytes, the efflux rate tended to de­

crease, especially in cells from fraction one, but the decrease was not 

significant. Toxin-exposed enterocytes had the same rate of calcium 

efflux as control. Addition of ouabain to toxin-exposed enterocytes did 
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Table 15. Effect o" ouabain on calcium-45 efflux rate from control and 
ST-exposed enterocytes® 

Control+ Toxin+ 
Fraction Control ouabain" Toxin ouabain^ 

I -1.13±0.07 -0.74±0.09 -0.94±0.20 -0.80±0.16 

II -0.95±0.12 -1.28±0.15 -1.31±0.36 -1.96±0.75 

III -1.22±0.43 -0.7UO.54 -1.82±0.42 -1.77±0.47 

^Values are given as mean (±SEM) from 2 animals. 

'^Concentration of ouabain in incubation medium was 1 mM. 

not change the efflux rate of calcium. The results indicated that there 

was no difference in calcium efflux rates from villus cells compared to 

crypt cells and neither ouabain nor toxin had an effect on calcium efflux 

rate. 

Determination of metabolic activity 

Metabolic activity determination was performed in villus cells using 

^^C-glucose or ^^C-glutamic acid as a substrate. In each experiment, the 

treatments were divided into control, control plus ouabain, toxin and toxin 

14 plus ouabain. COg was collected for 30 min intervals up to 3 hours. 

The maximum value produced from control was set as 100% and the activity 

produced by cells in the other three treatments was compared to this 

maximum control value. 

Glucose Table 16 and Figure 29 summarize the effects of toxin 

and ouabain on ^^tOg produced from glucose. When glucose was used as sub­

strate for the cells, COg production was linear up to 3 hours. Addition 

of ouabain significantly decreased the rate of COg production from glucose 
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Table 16, ^^C-glucose metabolism in isolated enterocytes® 

% Metabolic activity 

Time Control+ Toxin+ 
(min) Control ouabain^ Toxin ouabain^ 

30 15.93+3.91 10.08±2.15 15.65±3.68 15.45±3.43 

60 47.13+6.46 25.73±3.33 42.43+6.48 35.08±5.99 

90 67.20±6.01 36.70±5.40 62.00±8.77 46.55±4.47 

120 82.25+4.76 45.25±7.65 76.33+10.66 55.18±4.32 

150 91.98+2.62 51.80±9.04 86.78±11.82 61.78±5.03 

180 100.00 56.75+10.24 93.88±11.94 68.45±7.17 

^Values are given as mean of percent metabolic activity compared to 
maximum value of control (±SEM) from 4 animals. 

^Concentration of ouabain in incubation medium was 1 mM. 
• 

p < 0.05 compared to control. 

in control cells. Total ^^C-glucose metabolized to by 3 hours was 

reduced by approximately one-half when ouabain was added to control 

enterocytes. 

Addition of toxin did not significantly change the COg production 

rate from glucose compared to control. When ouabain was added to toxin-

exposed enterocytes, the rate of COg production was significantly reduced 

compared to control. Thus, ouabain inhibited glucose metabolism in both 

control and ST-exposed enterocytes. 

Glutamic acid The effects of ouabain and toxin on ^^COg produc­

tion from glutamic acid are summarized in Table 17 and Figure 30. The 

cells metabolized glutamic acid linearly during the 3-hour experimental 

period. Incubation of cells with ST did not alter the rate of glutamic 
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Figure 29. Effects of ouabain on ^^C-glucose metabolism in isolated 
villus cells from porcine jejunum 

The maximal value of ^^C02 produced from control was set 
as 100%. The activity produced by cells in control plus 
ouabain, toxin and toxin plus ouabain experiments was 
compared to the maximal control value. 

Each point represents mean (±SEM) from 4 animals. Concen­
tration of ouabain in incubation medium was 1 mM. 
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acid metabolism. Ouabain had no effect on production from glutamic 

acid in control or ST-treated enterocytes. 

Table 17. ^^C-glutamic acid metabolism in isolated enterocytes® 

% Metabolic activity 

Time Control+ Toxin+ 
(min) Control ouabain" Toxin ouabain" 

30 31.37+2. 34 9. 23±1. 78 12. 37±2.46 9.98±1.69 

60 31.37±4. 89 28. 32±4. 98 35. 57±5.25 28.47±3.57 

90 53.20±7. 30 49. 55±7. 39 48. 90±8.09 48.87±5.74 

120 71.10±8. 13 66. 10±9. 08 76. 85+8.00 64.78±5.92 

150 85.45+6. 30 78. 93±7. 73 91. 10±5.34 77.48±3.12 

180 100.00 93. 65±6. 84 105. 20±6.32 89.65±2.57 

^Values are given as mean of percent metabolic activity compared to 
maximum value of control (±SEM) from 6 animals. 

'^Concentration of ouabain in incubation medium was 1 mM. 
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Figure 30. Effects of ouabain on ^^C-glutamic acid metabolism in 
isolated villus cells from porcine jejunum 

The maximal value of ^^C02 produced from control was set 
as 100%. The activity produced by cells in control plus 
ouabain, toxin and toxin plus ouabain experiments was 
compared to the maximal control value. 

Each point represents mean (±SEM) from 5 animals. Concen­
tration of ouabain in incubation medium was 1 mM. 
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DISCUSSION 

Everted Gut Sac Studies 

Histological examination of everted sacs prepared after 45-60 

minute experimental periods revealed a generally intact epithelium. In 

some preparations, small amounts of edema were observed in the lamina 

propria but the accumulation was minimal since removal of the serosal and 

muscular coats of the intestine reduces the hindrance to fluid and solute 

movements (Parsons and Paterson, 1960). Field et al. (1971) determined Na 

and CI transport across short-circuited rabbit ileum and found out that 

the stripped preparation had a higher and more stable short-circuit cur­

rent than the unstripped preparation. A possible explanation for this 

observation might be that the unstripped intestine was relatively hypoxic 

due to an interference by the muscularis externa with oxygen diffusion. 

Wolfe et al. (1973) found that removal of the serosa and muscularis ex­

terna increased salicylate transport rates up to 50-85% compared to the 

intact one. The majority of the capillaries in the small intestine are 

found in the lamina propria at the base of the epithelial cells. Surgical 

removal of the serosa and muscularis externa may allow in vitro transport 

processes to approximate those observed in^ vivo. The serosa and muscu­

laris externa could be removed from an intestinal segment in one intact 

sheet with no damage to the absorptive tissue. Evidence that barriers to 

diffusion must be removed in in vitro systems is supported by studies of 

the role of the mesentery in water absorption in rat intestine. Removal 

of mesentery reduced absorption by 40% (Lee, 1953). Thus, the accumula-
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tion of water in tissue spaces in vitro may result from the absence of the 

circulatory dynamics for removal of absorbed fluid (Crane, 1965). These 

artifacts were minimized by stripping intestinal mucosa, oxygenating 

tissues, and controlling hydrostatic pressures across the epithelium. In 

the present study, the observation of morphologically intact mucosa and 

linear ion transport over the experimental period indicate retention of 

viability of the everted gut sacs. 

ST toxin significantly increased chloride insorption rate and ex-

sorption rate across jejunal mucosa. The increase was greater for the 

exsorption rate than the insorption and there was no lag period. The 

insorption rate from ST-exposed gut sacs was comparable to control during 

the first 20 minute experimental period but was greater than control at 25 

min and after. In contrast, the exsorption rate from ST-exposed sacs was 

increased during the first 5 minutes and continued to increase for the 

entire experimental period. Thus, the primary effect of ST toxin was to 

increase the secretion of chloride. ST may cause secretory diarrhea by 

increasing chloride conductance from epithelial cells and inhibition of 

the neutral NaCl coupled transport may not be the primary cause of ST 

effects. This is not consistent with results reported by Field et al. 

(1978) who showed that partially purified ST caused a rapid and persistent 

increase in electrical potential difference and short circuit current and 

abolished net chloride absorption with no effect on net chloride secre­

tion. The change in ion transport was half that produced by theophylline 

which stimulated net chloride secretion. Theophylline has been shown to 

increase intestinal electrolyte secretion by increasing cAMP concentration 

in intestinal cells (Field et al., 1972), in the same manner as cholera 
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toxin. Theophylline, CT and E. coli LT have been shown to inhibit a NaCl 

coupled uptake in the brush border membrane of the villus cells and stimu­

late active chloride secretion from crypt cells (Field et al., 1972; 

Field, 1979). Supporting evidence for this is that selective destruction 

of the villus cells by osmotic shock did not significantly diminish 

cholera toxin-induced fluid production in rabbit small intestine in vivo 

(Roggin et al., 1972). Furthermore, in the founder intestine (Frizzell 

et al., 1979b) and rabbit gall bladder (Frizzell et al., 1975), organs 

which contain no crypts, cAMP inhibited coupled NaCl absorption without 

any effect on ion secretion. Na coupled CI transport is absent in rabbit 

colon where crypts are prominent and cAMP stimulated active chloride 

secretion, with no effect on sodium fluxes (Frizzell et al., 1976). There 

has been no attempt to determine the effect of ST on these organs. How­

ever, ST exerted its secretory effects via increasing guanylate cyclase 

with subsequent increase in cGMP levels (Hughes et al., 1978; Guerrant et 

al., 1980; Scoot et al., 1930) and some evidence exists that most 

guanylate cyclase in the small intestine is located in the villus cells in 

association with brush border membranes (De Jonge, 1975; Quill and 

Weiser, 1975). Guandalini and Field (1979) demonstrated that ST and cAMP 

inhibited Na coupled CI influx equally in in vitro rabbit ileal mucosa. 

In addition, 01 uptake across the brush border membrane indicated that 

ST inhibited Na coupled CI uptake into the villus cells (Field, 1979). 

Even though theophylline, ST, and 8-bromo cyclic GMP all inhibited co-

transport of NaCl across brush border membrane maximally, ST and 8-bromo 

cyclic GMP had a smaller effect on the electrogenic component of in­
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testinal secretion suggesting they were less potent than cAMP in activat­

ing secretion by crypt cells. Field (1979) concluded that the action of 

ST should be viewed as primary antiabsorptive, whereas that of V. cholerae 

and heat labile ^ coli are both antiabsorptive and secretory. In the 

present study, however, the increase of chloride flux indicated that ST 

exerts its effect primarily on increasing chloride secretion from epi­

thelial cells, and far from inhibiting absorption, actually stimulates 

mucosa to serosa fluxes of chloride. 

In the present study, VIP added to the serosal side, increased 

chloride secretion from everted sacs. There was no change in chloride 

absorption. When added to ST-exposed gut sacs, VIP did not have any 

additive effect. Krejs et al. (1978) reported that low doses of VIP 

(0.02 ug/kg/min) infused into the superior mesenteric artery in dogs de­

creased sodium absorption from jejunum while high doses (0.24 ug/kg/min) 

increased secretion of sodium and chloride in addition to decreased sodium 

absorption. These effects of VIP were similar to those of cholera toxin 

(Field, 1979). Schwartz et al. (1974) reported that VIP increased adenyl­

ate cyclase with a subsequent increase in cAMP and electrolyte secretion 

in in vitro rabbit ileal mucosa. Net CI secretion exceeded net Na secre­

tion. However, VIP may have systemic effects in addition to local effects 

in causing intestinal secretion. Mailman (1978) found that intravenous 

infusion of VIP in anesthetized dogs reversed net sodium and water absorp­

tion to secretion due to a significant decrease in unidirectional absorp­

tive fluxes and smaller increases in secretory fluxes in association with 

a decrease in absorptive site blood flow and a decrease in arterial pres­

sure. Pretreatment with atropine inhibited most of VIP effects while 
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pretreatment with guanethidine, an adrenergic neuron blocking agent, did 

not. He concluded that VIP reduced gut absorption by decreased blood 

pressure and by acting locally upon acetylcholine release from intestinal 

tissue. In addition, VIP has been shown to increase contraction of 

guinea pig ileum and rabbit jejunum (Cohen and Landry, 1980). This effect 

was partially blocked by atropine indicating that one component of the 

contractile response was due to the release of acetylcholine. Histamine 

did not contribute to the ileal contractile response of VIP since 

pyrilamine, an H^ receptor antagonist, did not alter VIP-induced increase 

in intestinal tone. However, they concluded that the role of VIP in pro­

ducing intestinal pathologies might be to increase cAMP more than in­

testinal motility. The failure of VIP to enhance ST secretory effect in 

this study may be due to a final common pathway between these two agents 

in increasing ion secretion after cyclic nucleotide stimulation. 

Pilocarpine added to ST-exposed gut sacs showed no additive effect 

on ion secretion. Cholinergic drugs have been shown to increase intesti­

nal secretion both in vivo and in vitro (Tidball, 1961; Isaacs et al., 

1976). Morris and Turnberg (1980) observed that a cholinergic drug, 

neostigmine, caused a significant change from absorption to secretion of 

sodium, chloride and water in human jejunum. These effects were blocked 

by atropine. Isaacs et al. (1975) demonstrated the distribution of 

cholinergic fibers around the crypt and villi using a cholinesterase 

staining technique. Thus, the parasympathetic nervous system may play a 

role in the control of intestinal transport which is independent of its 

effects on motor activity (Morris and Turnberg, 1980). The mechanism of 

action of cholinergic drugs in increasing electrolyte secretion has been 
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shown to be via cyclic guanylate cyclase with subsequence increase in cGMP 

(Brasitus et al., 1975; Tapper et al., 1976) similar to the ST secretory 

effect (Field et al., 1978; Guerrant et al., 1980). Field et al. (1978) 

demonstrated that ST had similar secretory effects to theophylline, though 

smaller in magnitude. The combination of the two did not produce a 

greater effect than did theophylline alone. Field (1979) suggested that 

ST action was not limited by the availability of external cell membrane 

receptors but rather by an intrinsic limitation in the action of cGMP it­

self. This may explain why, in the present study, ST and pilocarpine 

which exerted their secretory effects via cGMP did not have an additive 

effect on chloride secretion from everted gut sacs. However, the results 

of the present study also indicated that membrane receptors for ST 

appeared to be different from muscarinic receptors as will be discussed 

below. 

Atropine added to ST-exposed gut sacs did not antagonize the effects 

of toxin either on chloride secretion or chloride absorption. This sug­

gested that ST receptors were not blocked by muscarinic antagonism. This 

is consistent with results reported by Guerrant et al. (1980) who showed 

that atropine, 10"^ M, given intragastrically or subcutaneously to the 

rat, had no effect on ST-induced secretion. However, Ahrens and Zhu 

(1982a) reported that atropine, 2 x 10"^ M, augmented net chloride and 

sodium absorption from control pig jejunum in vivo. They suggested that 

atropine blocked a cholinergically mediated secretory component of normal 

small intestine in which chloride transport might play a significant role. 

They also showed that intraluminal atropine significantly reduced net loss 

of water and electrolytes produced by ST from perfused swine jejunum. 
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The difference between iji^ vivo and iji vitro experiments may be that in the 

in vitro system, the gut is not under continuous cholinergic tone and 

thus, a secretory component is absent. Also, in the present study, the 

gut was incubated with the toxin in vivo for 45 minutes before isolation 

and the secretory process caused by ST was well developed prior to the 

addition of atropine. The results are consistent with a model in which ST 

and cholinergic drugs stimulate secretion by a final common pathway but 

via different receptors. There is evidence that this pathway is the 

guanylate cyclase system since the secretory effects of both ST and 

cholinergic drugs are associated with elevated cGMP (Brasitus et al., 

1976; Tapper et al., 1976; Field et al., 1978). Elevations in guanylate 

cyclase activity induced by ST in particulate preparations of rat intes­

tine were not affected by atropine (Guerrant et al., 1980). 

In the present study, clonidine, an alpha-2 adrenergic agonist, did 

not alter chloride transport from ST-exposed gut sacs. It has been well 

established that the sympathetic system plays a role in intestinal trans­

port (Wright et al., 1940; Field and McColl, 1973; Munday et al., 1980). 

Stimulation of alpha-adrenergic receptors in rabbit ileal mucosa enhanced 

active absorption of Na and CI probably by increasing cGMP levels (Field 

and McColl, 1973; Brasitus et al., 1976). The precise mechanism of action 

is not clear but it is believed that catecholamines exert their effects in 

regulation of intestinal transport via alpha-adrenergic receptors (Field 

and McColl, 1973; Hubel, 1976). Ahrens and Zhu (1982b) reported that 

epinephrine reversed chloride flux from net absorption to net secretion in 

the perfused jejunum of pigs. In addition, epinephrine reduced net loss 
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of water and electrolytes in the presence of ST. When phenylephrine or 

clonidine was added to perfusates, absorption was enhanced in control seg­

ments and secretion was reduced in the presence of ST. 

The alpha-2 adrenoreceptors have been suggested to be involved in 

regulating acetylcholine release at postganglionic cholinergic nerve 

terminals (Paton and Vizi, 1969; Kosterlitz et al., 1970). The myenteric 

(Auerbach's) plexus of guinea pig ileum contain synapses between pre­

ganglionic and postganglionic parasympathetic nerves. Stimulation of 

these nerves released acetylcholine which caused contraction of the longi­

tudinal muscle fibers (Paton and Vizi, 1959). Furness and Costa (1974) 

reviewed adrenergic innervation of the intestine and showed by histo-

chemical techniques that there was sparse adrenergic innervation to longi­

tudinal muscle of the small intestine. However, the adrenergic nerve 

terminals formed a network around the intramural neurones. Stimulation 

of the adrenergic nerves inhibited cholinergic nerve activity and reduced 

responses to cholinergic nerve stimulation. This adrenergic-inhibitory 

effect was reduced by phentolamine (an a-1 and a-2 adrenergic blocker). 

Drew (1978) reported that electrical stimulation of the cholinergic nerves 

supplying the longitudinal muscle of the guinea-pig ileum caused a twitch 

response which could be inhibited by clonidine. The inhibitory effect of 

clonidine was clearly mediated presynaptically because it did not alter 

the responsiveness of the ileum to exogenous acetylcholine. In perfused 

swine jejunum where presynaptic terminals are intact, clonidine has been 

shown to reduce ST effects (Ahrens and Zhu, 1982b). However, in the 

present study where serosal and muscularis external layers were stripped 
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off, the antagonizing effects of clonidine could not be seen. It may be 

concluded that stimulation of alpha-2 adrenoreceptors in vivo inhibits 

neuronal acetylcholine release and decreases the net secretion induced by 

ST. These effects were not observed in vitro because the preparation is 

not under cholinergic tone. The results do not support a role for alpha-2 

adrenoreceptors localized on enterocytes and directly modulating epi­

thelial ion transport. 

Phenylephrine, an alpha-1 adrenoreceptor agonist, significantly in­

creased chloride serosal to mucosal flux and decreased mucosal to serosal 

flux in ST-exposed gut sacs. This augmentation of the secretory action of 

ST is in contrast to its reported effect in the perfused jejunum of the 

pig in which phenylephrine reduced the net loss of water and electrolytes 

caused by ST (Ahrens and Zhu, 1982b). Their results were opposite to 

those which might be predicted from studies on intestinal smooth muscle. 

Bauer (1981) demonstrated alpha-1 adrenoreceptors in ileal smooth muscle 

and considered them to be stimulatory postjunctional modulators of 

cholinergic nerves. Thus, it might be predicted that phenylephrine would 

augment ST in vivo but not in vitro, especially since pilocarpine, a 

muscarinic drug, did not enhance the secretory action of ST in everted 

sacs. The present study suggests that phenylephrine has a direct effect 

on gut epithelium to stimulate chloride secretion and that this stimulus-

secretion coupling pathway is independent of that stimulated by ST. 

Phenylephrine may increase calcium concentration in the cells and calcium 

may act as a direct activator of a transport process responsible for 

chloride secretion. This is supported by evidence that A-23187, a calcium 
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ionophore, acted in transferring calcium across peripheral adrenergic 

neurones by increasing catecholamine output (Ito et al., 1978) and calcium 

has been shown to stimulate secretory processes in various cells including 

the intestinal epithelium (Foreman et al., 1973; Prince et al., 1973; 

Garcia et al., 1975; Frizzell, 1976). It is clear, however, that further 

studies are needed to define the site of adrenergic agonist action on ion 

transport. 

Morphine did not show any significant effects on chloride exsorption 

and insorption produced by ST in everted sacs. These results are in con­

trast to those of Ahrens and Zhu (1982b) who showed that morphine reduced 

electrolyte secretion in perfused porcine jejunum exposed to ST. They 

also showed that morphine stimulated net water and electrolyte absorption 

in normal jejunum. In addition to its effect on intestinal motility, 

morphine has been shown to have direct effect on ion transport by in­

creasing chloride absorption in in vitro rabbit ileal mucosa (McKay et 

al., 1981). Coupar (1978) and Beubler and Lembeck (1979) reported that 

morphine inhibited the secretory response to VIP, prostaglandin and 

carbachol in rat jejunum in vivo. Valiulis and Long (1973) demonstrated 

that oral administration of morphine inhibited spontaneous and cholera 

toxin-induced secretion in ligated ileal loops of guinea pigs and 

rabbits. These effects were blocked by naloxone. Dobbins et al. (1980) 

performed in vitro experiments with rabbit ileal mucosa and found that 

enkephalins increased sodium and chloride absorption. These effects were 

blocked by naloxone and tetrodotoxin but were not blocked by atropine, 

phentolamine, haloperidol or pretreatment with 6-hydroxydopamine. They 
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concluded that enkephalin may stimulate ion transport by altering the 

release of a nonadrenergic, noncholinergic neurotransmitter. Kachur 

et al. (1980) found that enkephalins, but not morphine, abolished net 

chloride secretion in in vitro experiments with guinea pig ileum. This 

suggested that the antisecretory action of endogenous opiates might in­

volve different receptors than those for morphine. However, McKay et al. 

(1981) reported the presence of specific opiate receptors in rabbit ileal 

mucosa which could be activated by morphine or an enkephalin analogue and 

blocked by naloxone. A significant increase in chloride absorption was 

observed and was due primarily to à decrease in the serosa to mucosa flux. 

No change in sodium transport was detected. They concluded that opiate 

receptors exist in rabbit ileal mucosa and that these influence electrical 

and ion transport changes across mucosa. Furthermore, the electrical re­

sponse to morphine was not blocked by atropine, propranolol, phentolamine, 

or haloperidol which suggested that cholinergic, adrenergic, or dopamin­

ergic nerves were not involved in mediating the response (Dobbins et al., 

1980). The results of the present study in which morphine failed to alter 

ST-stimulated chloride fluxes in everted sacs suggest that the opiate in­

hibition of secretion observed in vivo (Ahrens and Zhu, 1982b) may act via 

modulation of such undefined neurotransmitters and thus requires the 

presence of functioning enteric neurones. However, a direct action of 

opiates on mucosal cells cannot be ruled out considering the effects of 

morphine on rabbit ileal mucosa in vitro reported by McKay et al. (1981) 

and discussed above. It is possible that these differences in opiate 

activity on jejunal and ileal ion transport in vitro may be due to an in­



www.manaraa.com

138 

crease in opiate receptor density on gut epithelial cells from proximal to 

distal intestinal segments or the masking of opiate action in the presence 

of a maximal secretory response in our studies. Further studies using 

agonists and antagonists of opiates in the presence of varying doses of 

ST are required to clarify the site of opiate action. 

Isolated Enterocyte Studies 

Most in vitro experimental techniques in gastroenterology have 

focused on the function of the columnar epithelial cells of the small 

intestinal mucosa as the basis for intestinal absorptive phenomena 

(Kimmich, 1975). However, transport of substances across intestinal 

tissue is normally evaluated in tissue preparations with multiple cell 

types where accumulation and diffusion to underlying cell layers occur 

(Wilson and Wiseman, 1954; Crane and Wilson, 1958). A more direct evalua­

tion of transport mechanisms has been attempted through the use of iso­

lated epithelial cell preparations (Kimmich, 1970). The mechanical 

vibration method has been used by several investigators in order to iso­

late cells in a gradient from villus tips to crypts (Sjostrand, 1968; 

Harrison and Webster, 1969; Webster and Harrison, 1969). In this study, 

the vibration method was used to isolate cells from porcine jejunum. 

Histological examination of the gut at the end of the experiment revealed 

denudation of the villi with some crypts intact. Thus, some but not all 

crypt cells were removed in the third fraction. Harrison and Webster 

(1969) reported that low-power microscopic examination of the mucosal 

surface of the gut after a 20-min vibration period showed denuded villi 
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with crypts occupied in the deep clefts. However, after addition of EDTA, 

vibration of the inflated gut resulted in an explosive release of material. 

Phase microscopic examination showed these suspended particles to be crypt 

cells with complete absence of mature epithelial cells. 

Scanning and electron microscopic examination of isolated enterocytes 

was performed by Marsh et al. (1971). They found that the morphology of 

the cells was well-preserved after incubation for at least one hour. 

Brush border and lateral basal membranes were intact. Similar findings 

were reported by Gall et al. (1974). Hoffman and Kuksis (1979) also 

reported that isolated cells contained well-defined mitochondria, smooth 

and rough endoplasmic reticulum and microfilaments. Pink et al. (1970) 

examined cells obtained by washing the human and rat small intestine and 

found that 80-85% were intestinal absorptive cells. Although the micro­

villi were fairly well-preserved, the cells showed marked vacuolation 

indicating severe cell damage. They suggested that these were aged cells 

cast from the villus tips at the end of their life span. They were de­

stroyed rather rapidly because of high enzyme content of the cell itself 

and of the intestinal luminal fluid. In the present study, the aged cells 

were discarded at the beginning of the experiment by initial vibration 

prior to cell collection. 

The epithelial cell begins as an undifferentiated, mitotically active 

cell at the base of the crypt and differentiates as it moves up the villus 

to reach full maturity. Enzymic studies have been made at various stages 

of development (Dahlqvist and Nordstrom, 1966; Nordstrom et al., 1967; 

Imondi et al., 1969; Webster and Harrison, 1969). The methods of isola-
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tion of epithelial cells for enzyme assays performed by these investi­

gators varied from horizontal sectioning of frozen gut to mechanical 

vibration and chemical treatments. The results, however, were the same. 

For example, a marker enzyme for the mitotically active cell, thymidine 

kinase, was found mostly in crypt cells. In contrast, alkaline phospha­

tase and sucrase were found in villus cells where digestive and absorptive 

functions occurred. In the present study, a descending gradient of su­

crase activity was observed from fraction 1 to fraction 3. The highest 

activity was found in the first fraction of cells isolated indicating the 

presence of mature villus cells. Sucrase activity was lowest in the third 

fraction of cells, which indicated that this fraction was composed of 

immature villus and crypt cells. 

Villus and crypt cells have been suggested to have a difference in 

function with the former serving as absorptive cells while crypt cells are 

secretory (Trier, 1964; Hendrix and Bayless, 1970). Cholera toxin and 

cAMP activators have been demonstrated to alter electrolyte transport by 

inhibiting coupled NaCl exchange across the brush border in villus cells 

and increasing anion conductance of the crypt luminal membrane (Field, 

1980). ST, on the other hand, has been reported to increase guanylate 

cyclase with subsequent increase in cGMP (Field et al., 1978; Guerrant 

et al., 1980). Since theophylline, an inhibitor of phosphodiesterase, 

increased cGMP concentration in the presence as well as in the absence of 

ST, it was concluded that elevated cGMP produced by ST was due to in­

creased synthesis and not decreased breakdown of the nucleotide. Phospho­

diesterase was not affected by ST. Hughes et al. (1978) showed that the 
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8-bromo analogue of cGMP, which is not metabolized, evoked a secretory 

response without increasing the mucosal concentration of cAMP. Guerrant 

et al. (1980) concluded that ST stimulated fluid secretion by activating 

particular intestinal guanylate cyclase. Quill and Weiser (1975) found 

villus cells isolated from rat small intestine contained higher guanylate 

cyclase activity than the crypt cells. In contrast, adenylate cyclase 

activity was higher in crypts than in the villus cells. The subcellular 

localization of the cyclases was also evaluated by Quill and Weiser 

(1975). Guanylate cyclase was found to reside in the brush border mem­

brane while adenylate cyclase in the lateral basal membrane. Field et al. 

(1978) reported that ST absolished chloride absorption from in vitro 

rabbit ileal mucosa. Measurement of CI uptake across the brush border 

membrane indicated that ST and probably cGMP inhibited Na coupled CI up­

take into villus cells (Field, 1979). These data suggest that the mature 

villus cell should be more sensitive to the effects of ST than immature 

enterocytes. 

In the present study, there was no difference between chloride efflux 

rate in control villus and crypt cells. ST significantly increased 

chloride efflux rates in villus and crypt cells to the same degree, indi­

cating that the toxin exerted its effects on both mature and immature 

intestinal cells. These findings are not consistent with the results of 

Field et al. (1978) who reported that ST altered electrolyte transport by 

active CI absorption, but not secretion, from rabbit ileum. Walling et al. 

(1978) studied subcellular distribution of nucleotide cyclases in rat 

intestinal cells. They demonstrated that while adenylate cyclase was 
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largely confined to the basolateral surface of the epithelial cells, 

guanylate cyclase was found on the brush-border and basolateral membrane 

fractions in the ratio 2.4:1. Thus, crypt cells, with a sparse brush 

border, contain guanylate cyclase in the basolateral membrane which may 

respond to ST. Schleuter (Iowa State University, Ames, Iowa, personal 

communication, 1982) found equal amounts of guanylate cyclase activity in 

the porcine jejunal villus and crypt cells and that ST had the same effect 

in increasing guanylate cyclase in both cell fractions. The difference in 

distribution of enzyme might be due to species difference. If ST toxin 

exerts its secretory effect via guanylate cyclase stimulation, then in 

porcine species, villus and crypt cells were equally affected because 

guanylate cyclase is present in both types of cells. 

Atropine did not alter chloride efflux rate from control or ST-ex-

posed isolated enterocytes. This was consistent with the results obtained 

with everted sacs. The secretory effect of cholinergic drugs can be 

blocked by atropine (Tidball, 1961; Hubel, 1976, 1977; Morris and Turn-

berg, 1980). Cholinergic drugs exert their secretory effects via increas­

ing guanylate cyclase and cGMP (Brasitus et al., 1976; Tapper et al., 

1976). However, short-lived elevations in cAMP after addition of acetyl­

choline have also been observed (Isaacs et al., 1976). Rimele et al. 

(1981) reported evidence for muscarinic receptors on rat colonic epi­

thelial cells. Their study revealed one specific binding site in the 

jejunum, ileum and colon. The receptor density was higher in the colon 

than in the jejunum which contained the same amount as the ileum. These 

results suggest that the effects of muscarinic drugs on intestinal epi­
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thelial cell function are mediated by interaction with receptors which 

stimulate activation of guanylate cyclase and secretion. Muscarinic and 

ST receptor activation may increase chloride secretion by increasing 

guanylate cyclase, but inhibition of muscarinic receptors by atropine in 

the present study did not interfere with secretory effects of ST. In 

addition, pilocarpine did not enhance ST effects in everted gut sac ex­

periments. This supports the idea that ST and muscarinic drugs may have a 

final common pathway in increasing cGMP and that ST action is not limited 

by the availability of membrane receptors but rather by an intrinsic 

limitation in the maximal effect of cGMP. 

Clonidine did not have any effect on chloride efflux rate either in 

control or ST-exposed enterocytes. Previous studies have suggested that 

antisecretory effects of adrenergic drugs are mediated via alpha-

adrenergic receptors (Field and McColl, 1973; Hubel, 1976). Tapper et al. 

(1981) demonstrated that norepinephrine release induced by tyramine 

stimulated Na and CI absorption from rabbit ileum. Phentolamine blocked 

these effects of tyramine, which indicated an alpha-adrenergic effect of 

endogenous norepinephrine release. There has been no direct evidence 

indicating alpha-adrenergic receptors are present in the epithelial cells 

but noradrenergic fibers extending from the submucosal plexus to the tip 

of intestinal villi have been demonstrated by Thomas and Templeton (cf. 

Tapper et al., 1981). This suggested a direct effect of endogenous 

catecholamine on intestinal ion absorption. However, results from the 

present study indicated that an alpha-2 adrenergic agonist did not alter 

basal or ST-stimulated chloride efflux rate from isolated enterocytes. It 
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is possible, as postulated by Tapper et al. (1981), that norepinephrine 

may not be the final mediator of Na and CI absorption. Stimulating 

effects of norepinephrine on neurotransmitters such as somatostatin or 

enkephalin have been suggested. 

In the present study, morphine reduced chloride efflux rate from ST-

exposed mature villus cells isolated from pig jejunum. No effects on ST-

exposed immature cells or control enterocytes have been found. The re­

sults suggest that ST exerts its effect of increased chloride efflux from 

all age enterocytes and that morphine diminishes this effect in mature 

enterocytes. Whether this antagonizing effect of morphine is via opiate 

receptors needs to be confirmed by using an opiate antagonist—naloxone. 

However, McKay et al. (1981) reported that morphine significantly in­

creased chloride absorption in in vitro rabbit ileal mucosa primarily by 

decreasing serosa to mucosa flux. These responses were blocked competi­

tively by naloxone. They suggested the presence of opiate receptors in 

rabbit ileal mucosa. Other evidence of a direct effect of morphine on 

the mucosal cells was reported by Collier and Roy (1974) who observed that 

morphine inhibited prostaglandin E^-induced cAMP formation in rat in­

testinal homogenate. Beubler and Lembeck (1979) demonstrated that mor­

phine reduced the basal intestinal fluid volume (IFV) in rat jejunum and 

inhibited the increased IFV caused by PGE-,, VIP, and carbachol. The in­

hibitory effect of morphine on PGE^-stimulated secretion was dose-dependent, 

inhibited by naloxone, and associated with decreased levels of cAMP (Coupar, 

1978; Beubler and Lembeck, 1980). Valiulis and Long (1973) reported that 

morphine prevented intestinal fluid accumulation caused by cholera 
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toxin in rabbits and guinea pigs. In addition, morphine inhibited ST 

effects on ion and water loss in swine jejunum perfused in vivo (Ahrens 

and Zhu, 1982b). Thus, it has been clearly demonstrated that morphine 

exerts its antisecretory effect directly on the epithelial cells. This 

effect is nonspecific since morphine inhibits actions of different secre­

tory agents whose mechanisms of action are not alike. For example, it is 

clear that adenylate cyclase inhibitory effect of morphine (Beubler and 

Lembeck, 1980) is not the sole basis for the antisecretory action of 

morphine since it inhibited the action of ST. 

ST did not alter calcium efflux rate from isolated enterocytes. 

Ouabain did not have any effect either on basal or ST-exposed calcium 

effluxes. The results suggest that the ST effect in increasing chloride 

secretion does not involve calcium concentration in the epithelial cells. 

Calcium ion, however, has been shown to be involved in stimulus-secretion 

coupling in many epithelial cell types. By using A-23187, a calcium 

ionophore, the relationships between calcium and secretory processes could 

be demonstrated. Frizzell (1977) reported that, in the presence of 

calcium, A-23187 reversed active chloride absorption to secretion in 

isolated rabbit colon. Bolton and Field (1977) found that secretory ac­

tions of carbamylcholine and serotonin in stripped rabbit ileal mucosa 

depended on extracellular calcium. In those cases, the ionophore did not 

alter the level of cAMP suggesting the secretory capability of calcium was 

independent of cAMP. However, the effects of the ionophore in the in­

testine was smaller in magnitude than those seen with agents which in­

creased the level of cAMP, theophylline for example (Bolton and Field, 
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1977). A number of secretory cells such as the insect salivary gland, the 

intestine, the parotid, the cornea and the sweat glands possess receptors 

for both agonists that gate calcium and for agonists that activate 

adenylate cyclase (Berridge, 1979). For most instances, though not all, 

the effects of calcium and cAMP are complementary, as in the stimulation 

of fluid secretion by fly salivary gland (Prince and Berridge, 1973), 

activation of renal gluconeogenesis (Kurokawa and Rasmussen, 1973), and 

stimulation of amylase secretion by exocrine pancreas (Williams and Lee, 

1974). While cAMP has been shown to increase calcium from the intra­

cellular site (Christophe et al., 1976; Frizzell, 1976), the ability of 

acetylcholine to stimulate secretion by intestine (Bolton and Field, 1977) 

or sweat gland (Sato, 1977) was totally dependent upon external calcium. 

Nevertheless, VIP, prostaglandin, and theophylline exerted their effects 

on intestinal secretion independent of calcium (Bolton and Field, 1977; 

Berridge, 1979). Field et al. (1978) reported that ST when added to 

rabbit ileal mucosa in vitro evoked a rapid and persistent secretory ac­

tion which was not quite as large as those produced by addition of 

theophylline or dibutyryl cAMP. The secretory action of ST, however, was 

reversible and occurred in the absence of extracellular calcium. The re­

sults in this study indicate that the chloride secretory effect of ST is 

not dependent on calcium. 

In the present study isolated enterocytes maintained their metabolic 

activity during the experimental period of 3 hours. liberated from 

^^C-glucose or ^^C-glutamic acid was detected linearly according to time 

which indicated the viability of the cells throughout the experimental 
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period. ST did not have any effect on production from either ^^C-

glucose or ^^C-glutamic acid. Sugars and amino acids are transported 

across the small intestine by a two stage process (Hopfer et al., 1976; 

Weiss et al., 1978; Mircheff et al., 1980; Wright et al., 1980): The 

first is the entry of substances into the epithelium across the brush 

border membrane and the second is the efflux of substances out of the 

cell across the basolateral membrane into blood. In the brush border 

membrane, the major transport mechanism is sodium cotransport in which 

sugars and amino acids are transported against their chemical potential 

gradient through a coupling to the sodium electrochemical potential 

gradient across the membrane. Kimmich and Randies (1975, 1976) and 

Randies and Kimmich (1978) found that in the absence of sodium, the sodium 

cotransport system of glucose was inoperative in isolated chick entero-

cytes. This is also true for amino acid transport in rat isolated 

enterocytes (Hopfer et al., 1976). The potential gradient of sodium, 

however, is maintained by Na-K activated ATPase, an enzyme located on the 

basolateral membrane (Field, 1980). This enzyme is unaffected by ST 

toxin (Ahrens and Zhu, 1982a). 

Ouabain significantly reduced ^^COg production from ^^C-glucose in 

both control and ST-exposed enterocytes but had no effect on ^^COg pro­

duction from ^^C-glutamic acid. Ouabain, a cardiac glycoside, specifical­

ly blocks ATPase on the basolateral membrane of the epithelial cell lead­

ing to inhibition of the sodium pump (Lehninger, 1976). Thus, sodium-

dependent sugar and amino acid transport into the cell via the brush 

border membrane are inhibited and in the presence of ouabain, both 
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glucose and ^^C-glutamic acid transport through the brush border membrane 

should decrease. However, there is evidence that glucose transport is 

more sensitive to ATPase inhibition than is amino acid transport. For 

example, in the absence of sodium, glucose transport was inhibited more 

than transport of L-valine in brush border preparations (Hopfer et al., 

1976). In addition, sodium-independent transport or simple diffusions of 

amino acids into the cell may occur across the basolateral membranes 

(Wright et al., 1980). Experiments with isolated basolateral membranes 

revealed L-valine transport was greater than glucose both in the presence 

and absence of sodium (Hopfer et al., 1975). The results of the present 

study are consistent with these observations since isolated enterocytes 

have exposed basolateral membranes and thus ^^C-glutamic acid transport 

was less affected by ouabain than ^^C-glucose. More importantly, the re­

sults indicate that ST does not alter the ability of enterocytes to 

metabolize glucose or glutamic acid either in the presence or absence of 

ouabain and support the current hypothesis that glucose coupled sodium 

transport is not impaired by enterotoxin. 
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SUMMARY 

The in vitro effects of E. coli heat-stable enterotoxin (ST) on iso­

lated jejunum of 3-week-old piglets were studied using everted gut sac and 

isolated enterocyte techniques. ST increased chloride secretion and 

chloride absorption in the everted gut sac studies. VIP (2 pg/ml) in­

creased chloride secretion but had no effect on chloride absorption. 

Neither VIP nor pilocarpine (10~^ M) had any additive effect to ST. ST 

secretory effects were not blocked by atropine (2 x 10"^ M), clonidine 

(10~® M), or morphine (1.2 ug/ml). Phenylephrine (10'^ M), an alpha-1 

adrenergic agonist, enhanced ST secretory effects. 

Three fractions of cells were isolated from pig jejunum: upper 

villus, lower villus, and crypt cells. ST increased chloride efflux 

rates from all three fractions. These effects were not blocked by atro­

pine or clonidine. Morphine significantly reduced chloride efflux rate 

from mature villus cells with no significant effect on immature epithelial 

cells. ST did not have any effect on calcium efflux rate from isolated 

enterocytes. 

Metabolic activity studies performed by using ^^C-glucose and ^^C-

glutamic acid as substrates revealed no significant effect of ST on 

production. Ouabain (1 mM) blocked ^^COg production from ^^C-glucose but 

14 not from C-glutamic acid. The results indicated that isolated entero­

cytes maintained metabolic activity in the presence of enterotoxin. 

The results suggest that ST produces loss of fluid and electrolytes 

primarily by stimulating secretion rather than impairing absorption. This 

action is exerted directly on both mature villus and immature crypt cells 
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and is not inhibited by alpha-adrenergic agonists or cholinergic 

antagonists. Opiate agonists may inhibit secretion, in part, by a 

direct action on mature enterocytes. 
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